IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v118y2003i1d10.1023_a1024739508603.html
   My bibliography  Save this article

New Relaxation Method for Mathematical Programs with Complementarity Constraints

Author

Listed:
  • G.H. Lin

    (Kyoto University
    Dalian University of Technology)

  • M. Fukushima

    (Kyoto University)

Abstract

In this paper, we present a new relaxation method for mathematical programs with complementarity constraints. Based on the fact that a variational inequality problem defined on a simplex can be represented by a finite number of inequalities, we use an expansive simplex instead of the nonnegative orthant involved in the complementarity constraints. We then remove some inequalities and obtain a standard nonlinear program. We show that the linear independence constraint qualification or the Mangasarian–Fromovitz constraint qualification holds for the relaxed problem under some mild conditions. We consider also a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is a weakly stationary point of the original problem and that, if the function involved in the complementarity constraints does not vanish at this point, it is C-stationary. We obtain also some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices of the Lagrangian functions of the relaxed problems are new and can be verified easily. Our limited numerical experience indicates that the proposed approach is promising.

Suggested Citation

  • G.H. Lin & M. Fukushima, 2003. "New Relaxation Method for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 81-116, July.
  • Handle: RePEc:spr:joptap:v:118:y:2003:i:1:d:10.1023_a:1024739508603
    DOI: 10.1023/A:1024739508603
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1024739508603
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1024739508603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Guo & Gaoxi Li, 2024. "Approximation Methods for a Class of Non-Lipschitz Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1421-1445, September.
    2. Nie, Pu-yan & Chen, Li-hua & Fukushima, Masao, 2006. "Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers," European Journal of Operational Research, Elsevier, vol. 169(1), pages 310-328, February.
    3. Gemayqzel Bouza & Georg Still, 2007. "Mathematical Programs with Complementarity Constraints: Convergence Properties of a Smoothing Method," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 467-483, May.
    4. Gui-Hua Lin & Masao Fukushima, 2005. "A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints," Annals of Operations Research, Springer, vol. 133(1), pages 63-84, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Scholtes, 2004. "Nonconvex Structures in Nonlinear Programming," Operations Research, INFORMS, vol. 52(3), pages 368-383, June.
    2. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    3. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," Econometric Institute Research Papers ERS-2003-085-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    5. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    6. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    7. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    8. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    9. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    10. Aram V. Arutyunov & Alexey F. Izmailov, 2005. "Sensitivity Analysis for Cone-Constrained Optimization Problems Under the Relaxed Constraint Qualifications," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 333-353, May.
    11. A. F. Izmailov & M. V. Solodov, 2002. "The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and its Applications to Optimality Conditions," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 614-635, August.
    12. Ilker Birbil, S. & Gürkan, G. & Listes, O.L., 2004. "Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints : Sample-Path Analysis," Discussion Paper 2004-25, Tilburg University, Center for Economic Research.
    13. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.
    14. S. Dempe, 2012. "Comments on: Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 28-29, April.
    15. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    16. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," ERIM Report Series Research in Management ERS-2003-085-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Grimm, Veronika & Martin, Alexander & Weibelzahl, Martin & Zöttl, Gregor, 2014. "Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 460, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    18. A. Izmailov & M. Solodov, 2009. "Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints," Computational Optimization and Applications, Springer, vol. 42(2), pages 231-264, March.
    19. Yongchao Liu & Huifu Xu & Gui-Hua Lin, 2012. "Stability Analysis of One Stage Stochastic Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 537-555, February.
    20. Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:118:y:2003:i:1:d:10.1023_a:1024739508603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.