IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i4p657-680.html
   My bibliography  Save this article

Approximate likelihood methods for estimating local recombination rates

Author

Listed:
  • Paul Fearnhead
  • Peter Donnelly

Abstract

Summary. There is currently great interest in understanding the way in which recombination rates vary, over short scales, across the human genome. Aside from inherent interest, an understanding of this local variation is essential for the sensible design and analysis of many studies aimed at elucidating the genetic basis of common diseases or of human population histories. Standard pedigree‐based approaches do not have the fine scale resolution that is needed to address this issue. In contrast, samples of deoxyribonucleic acid sequences from unrelated chromosomes in the population carry relevant information, but inference from such data is extremely challenging. Although there has been much recent interest in the development of full likelihood inference methods for estimating local recombination rates from such data, they are not currently practicable for data sets of the size being generated by modern experimental techniques. We introduce and study two approximate likelihood methods. The first, a marginal likelihood, ignores some of the data. A careful choice of what to ignore results in substantial computational savings with virtually no loss of relevant information. For larger sequences, we introduce a ‘composite’ likelihood, which approximates the model of interest by ignoring certain long‐range dependences. An informal asymptotic analysis and a simulation study suggest that inference based on the composite likelihood is practicable and performs well. We combine both methods to reanalyse data from the lipoprotein lipase gene, and the results seriously question conclusions from some earlier studies of these data.

Suggested Citation

  • Paul Fearnhead & Peter Donnelly, 2002. "Approximate likelihood methods for estimating local recombination rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 657-680, October.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:657-680
    DOI: 10.1111/1467-9868.00355
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00355
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    2. Kenne Pagui, E.C. & Salvan, A. & Sartori, N., 2015. "On full efficiency of the maximum composite likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 120-124.
    3. Deng Ling & Moore Dirk F., 2009. "Composite Likelihood Modeling of Neighboring Site Correlations of DNA Sequence Substitution Rates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, January.
    4. Hössjer Ola & Hartman Linda & Humphreys Keith, 2009. "Ancestral Recombination Graphs under Non-Random Ascertainment, with Applications to Gene Mapping," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-46, September.
    5. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:657-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.