IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i2d10.1007_s10463-022-00844-4.html
   My bibliography  Save this article

Inference using an exact distribution of test statistic for random-effects meta-analysis

Author

Listed:
  • Keisuke Hanada

    (Shiga University)

  • Tomoyuki Sugimoto

    (Shiga University)

Abstract

Random-effects meta-analysis serves to integrate the results of multiple studies with methods such as moment estimation and likelihood estimation duly proposed. These existing methods are based on asymptotic normality with respect to the number of studies. However, the test and interval estimation deviate from the nominal significance level when integrating a small number of studies. Although a method for constructing more conservative intervals has been recently proposed, the exact distribution of test statistic for the overall treatment effect is not well known. In this paper, we provide an almost-exact distribution of the test statistic in random-effects meta-analysis and propose the test and interval estimation using the almost-exact distribution. Simulations demonstrate the accuracy of estimation and application to existing meta-analysis using the method proposed here. With known variance parameters, the estimation performance using the almost-exact distribution always achieves the nominal significance level regardless of the number of studies and heterogeneity. We also propose some methods to construct a conservative interval estimation, even when the variance parameters are unknown, and present their performances via simulation and an application to Alzheimer’s disease meta-analysis.

Suggested Citation

  • Keisuke Hanada & Tomoyuki Sugimoto, 2023. "Inference using an exact distribution of test statistic for random-effects meta-analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 281-302, April.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:2:d:10.1007_s10463-022-00844-4
    DOI: 10.1007/s10463-022-00844-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00844-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00844-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruey Chen & Pi-Tuan Chan & Hsin Chu & Yu-Cih Lin & Pi-Chen Chang & Chien-Yu Chen & Kuei-Ru Chou, 2017. "Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: A meta-analysis," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    2. Mengke Li & Yukun Liu & Pengfei Li & Jing Qin, 2022. "Empirical likelihood meta-analysis with publication bias correction under Copas-like selection model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 93-112, February.
    3. Dean A. Follmann & Michael A. Proschan, 1999. "Valid Inference in Random Effects Meta-Analysis," Biometrics, The International Biometric Society, vol. 55(3), pages 732-737, September.
    4. Haben Michael & Suzanne Thornton & Minge Xie & Lu Tian, 2019. "Exact inference on the random‐effects model for meta‐analyses with few studies," Biometrics, The International Biometric Society, vol. 75(2), pages 485-493, June.
    5. Hisashi Noma & Kengo Nagashima & Toshi A. Furukawa, 2020. "Permutation inference methods for multivariate meta‐analysis," Biometrics, The International Biometric Society, vol. 76(1), pages 337-347, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:36:i03 is not listed on IDEAS
    2. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    3. Ito, Tsubasa & Sugasawa, Shonosuke, 2021. "Improved confidence regions in meta-analysis of diagnostic test accuracy," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    4. repec:jss:jstsof:30:i07 is not listed on IDEAS
    5. Knapp, Guido & Hartung, Joachim, 2000. "Combined test procedures in the meta-analysis of controlled clinical trials," Technical Reports 2000,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Böckenhoff, Annette & Hartung, Joachim, 2000. "Meta-analysis: Different methods - different conclusions?," Technical Reports 2000,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Ao Huang & Kosuke Morikawa & Tim Friede & Satoshi Hattori, 2023. "Adjusting for publication bias in meta‐analysis via inverse probability weighting using clinical trial registries," Biometrics, The International Biometric Society, vol. 79(3), pages 2089-2102, September.
    8. Janie McDonald & Patrick D. Gerard & Christopher S. McMahan & William R. Schucany, 2016. "Exact-Permutation-Based Sign Tests for Clustered Binary Data Via Weighted and Unweighted Test Statistics," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 698-712, December.
    9. Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
    10. H. M. James Hung & Xiangmin Zhang & Sue-Jane Wang, 2018. "Some Recent Advances on Statistical Approaches for Planning Multi-regional Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 460-472, August.
    11. Bodnar, Olha & Bodnar, Taras, 2021. "Objective Bayesian meta-analysis based on generalized multivariate random effects model," Working Papers 2021:5, Örebro University, School of Business.
    12. Han Chen & Alisa K. Manning & Josée Dupuis, 2012. "A Method of Moments Estimator for Random Effect Multivariate Meta-Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1278-1284, December.
    13. Kepher Henry Makambi, 2002. "On pooling data summaries in the absence of interactions “response-by-study”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 127-138, February.
    14. G. Baker Stuart & S. Lindeman Karen, 2013. "Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 51-82, June.
    15. Ding‐Geng Chen & Dungang Liu & Xiaoyi Min & Heping Zhang, 2020. "Relative efficiency of using summary versus individual data in random‐effects meta‐analysis," Biometrics, The International Biometric Society, vol. 76(4), pages 1319-1329, December.
    16. Evangelos Kontopantelis & David Reeves, 2010. "metaan: Random-effects meta-analysis," Stata Journal, StataCorp LP, vol. 10(3), pages 395-407, September.
    17. Fahad M. Al Amer & Christopher G. Thompson & Lifeng Lin, 2021. "Bayesian Methods for Meta-Analyses of Binary Outcomes: Implementations, Examples, and Impact of Priors," IJERPH, MDPI, vol. 18(7), pages 1-14, March.
    18. Evangelos Kontopantelis & David A Springate & David Reeves, 2013. "A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-14, July.
    19. Marchetti, Dalmo & Wanke, Peter F., 2019. "Efficiency in rail transport: Evaluation of the main drivers through meta-analysis with resampling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 83-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:2:d:10.1007_s10463-022-00844-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.