IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0069930.html
   My bibliography  Save this article

A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses

Author

Listed:
  • Evangelos Kontopantelis
  • David A Springate
  • David Reeves

Abstract

Background: Heterogeneity has a key role in meta-analysis methods and can greatly affect conclusions. However, true levels of heterogeneity are unknown and often researchers assume homogeneity. We aim to: a) investigate the prevalence of unobserved heterogeneity and the validity of the assumption of homogeneity; b) assess the performance of various meta-analysis methods; c) apply the findings to published meta-analyses. Methods and Findings: We accessed 57,397 meta-analyses, available in the Cochrane Library in August 2012. Using simulated data we assessed the performance of various meta-analysis methods in different scenarios. The prevalence of a zero heterogeneity estimate in the simulated scenarios was compared with that in the Cochrane data, to estimate the degree of unobserved heterogeneity in the latter. We re-analysed all meta-analyses using all methods and assessed the sensitivity of the statistical conclusions. Levels of unobserved heterogeneity in the Cochrane data appeared to be high, especially for small meta-analyses. A bootstrapped version of the DerSimonian-Laird approach performed best in both detecting heterogeneity and in returning more accurate overall effect estimates. Re-analysing all meta-analyses with this new method we found that in cases where heterogeneity had originally been detected but ignored, 17–20% of the statistical conclusions changed. Rates were much lower where the original analysis did not detect heterogeneity or took it into account, between 1% and 3%. Conclusions: When evidence for heterogeneity is lacking, standard practice is to assume homogeneity and apply a simpler fixed-effect meta-analysis. We find that assuming homogeneity often results in a misleading analysis, since heterogeneity is very likely present but undetected. Our new method represents a small improvement but the problem largely remains, especially for very small meta-analyses. One solution is to test the sensitivity of the meta-analysis conclusions to assumed moderate and large degrees of heterogeneity. Equally, whenever heterogeneity is detected, it should not be ignored.

Suggested Citation

  • Evangelos Kontopantelis & David A Springate & David Reeves, 2013. "A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-14, July.
  • Handle: RePEc:plo:pone00:0069930
    DOI: 10.1371/journal.pone.0069930
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069930
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0069930&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0069930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dean A. Follmann & Michael A. Proschan, 1999. "Valid Inference in Random Effects Meta-Analysis," Biometrics, The International Biometric Society, vol. 55(3), pages 732-737, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:36:i03 is not listed on IDEAS
    2. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    3. repec:jss:jstsof:30:i07 is not listed on IDEAS
    4. Knapp, Guido & Hartung, Joachim, 2000. "Combined test procedures in the meta-analysis of controlled clinical trials," Technical Reports 2000,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Böckenhoff, Annette & Hartung, Joachim, 2000. "Meta-analysis: Different methods - different conclusions?," Technical Reports 2000,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Ao Huang & Kosuke Morikawa & Tim Friede & Satoshi Hattori, 2023. "Adjusting for publication bias in meta‐analysis via inverse probability weighting using clinical trial registries," Biometrics, The International Biometric Society, vol. 79(3), pages 2089-2102, September.
    7. Janie McDonald & Patrick D. Gerard & Christopher S. McMahan & William R. Schucany, 2016. "Exact-Permutation-Based Sign Tests for Clustered Binary Data Via Weighted and Unweighted Test Statistics," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 698-712, December.
    8. Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
    9. H. M. James Hung & Xiangmin Zhang & Sue-Jane Wang, 2018. "Some Recent Advances on Statistical Approaches for Planning Multi-regional Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 460-472, August.
    10. Han Chen & Alisa K. Manning & Josée Dupuis, 2012. "A Method of Moments Estimator for Random Effect Multivariate Meta-Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1278-1284, December.
    11. Kepher Henry Makambi, 2002. "On pooling data summaries in the absence of interactions “response-by-study”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 127-138, February.
    12. G. Baker Stuart & S. Lindeman Karen, 2013. "Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 51-82, June.
    13. Keisuke Hanada & Tomoyuki Sugimoto, 2023. "Inference using an exact distribution of test statistic for random-effects meta-analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 281-302, April.
    14. Ding‐Geng Chen & Dungang Liu & Xiaoyi Min & Heping Zhang, 2020. "Relative efficiency of using summary versus individual data in random‐effects meta‐analysis," Biometrics, The International Biometric Society, vol. 76(4), pages 1319-1329, December.
    15. Evangelos Kontopantelis & David Reeves, 2010. "metaan: Random-effects meta-analysis," Stata Journal, StataCorp LP, vol. 10(3), pages 395-407, September.
    16. Marchetti, Dalmo & Wanke, Peter F., 2019. "Efficiency in rail transport: Evaluation of the main drivers through meta-analysis with resampling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 83-100.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0069930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.