IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v1y2013i1p51-82n7.html
   My bibliography  Save this article

Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials

Author

Listed:
  • G. Baker Stuart

    (National Cancer Institute)

  • S. Lindeman Karen

    (Johns Hopkins Medical Institutions)

Abstract

There is an ongoing controversy over whether epidural analgesia for women in labor increases the probability of Caesarean section. Previous research compared results from three methods for estimating the effect of epidural analgesia on the probability of Caesarean section: a propensity score analysis, the paired availability design for historical controls, and meta-analysis of randomized trials. The propensity score analysis and a paired availability design gave substantially different results with the latter in closer agreement with results of a meta-analysis of randomized trials. We updated this investigation in three ways. First, we discussed the use of causal graphs for variable selection in the propensity score analysis. Second, we introduced new extrapolation estimates to improve generalizability for the paired availability design and the meta-analysis of randomized trials with crossovers. Third, we included the results from more recent studies. This analysis provides a window into various topics in causal inference and comparative effectiveness research.

Suggested Citation

  • G. Baker Stuart & S. Lindeman Karen, 2013. "Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 51-82, June.
  • Handle: RePEc:bpj:causin:v:1:y:2013:i:1:p:51-82:n:7
    DOI: 10.1515/jci-2013-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2013-0005
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2013-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 3-14, May.
    3. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    4. Dean A. Follmann & Michael A. Proschan, 1999. "Valid Inference in Random Effects Meta-Analysis," Biometrics, The International Biometric Society, vol. 55(3), pages 732-737, September.
    5. Jing Cheng, 2009. "Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome," Biometrics, The International Biometric Society, vol. 65(1), pages 96-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    2. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    3. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
    4. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    5. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    6. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: evidence from an instrumental variable analysis of China's one‐child policy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1615-1635, October.
    7. Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
    8. Deuchert, Eva & Eugster, Beatrix, 2019. "Income and substitution effects of a disability insurance reform," Journal of Public Economics, Elsevier, vol. 170(C), pages 1-14.
    9. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    10. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    11. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    12. Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.
    13. James J. Heckman & Rodrigo Pinto, 2018. "Unordered Monotonicity," Econometrica, Econometric Society, vol. 86(1), pages 1-35, January.
    14. Huber, Martin & Steinmayr, Andreas, 2017. "A framework for separating individual treatment effects from spillover, interaction, and general equilibrium effects," FSES Working Papers 481, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    15. Chuan Ju & Zhi Geng, 2010. "Criteria for surrogate end points based on causal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 129-142, January.
    16. Weili Ding & Steven F. Lehrer, 2010. "Estimating Treatment Effects from Contaminated Multiperiod Education Experiments: The Dynamic Impacts of Class Size Reductions," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 31-42, February.
    17. Eva Deuchert & Martin Huber & Mark Schelker, 2019. "Direct and Indirect Effects Based on Difference-in-Differences With an Application to Political Preferences Following the Vietnam Draft Lottery," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 710-720, October.
    18. Carlos A. Flores & Alfonso Flores-Lagunes, 2007. "Identification and Estimation of Casual Mechanisms and Net Effects of a Treatment," Working Papers 0706, University of Miami, Department of Economics.
    19. Bia, Michela & Flores-Lagunes, Alfonso & Mercatanti, Andrea, 2018. "Evaluation of Language Training Programs in Luxembourg using Principal Stratification," GLO Discussion Paper Series 289, Global Labor Organization (GLO).
    20. Vira Semenova, 2020. "Generalized Lee Bounds," Papers 2008.12720, arXiv.org, revised Feb 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:1:y:2013:i:1:p:51-82:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.