IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp100-110.html
   My bibliography  Save this article

Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials

Author

Listed:
  • Schmidli, Heinz
  • Neuenschwander, Beat
  • Friede, Tim

Abstract

Continuous endpoints are common in clinical trials. The design and analysis of such trials is often based on models assuming normally distributed data, possibly after an appropriate transformation. When planning a new trial, information on the variance of the endpoint is usually available from historical trials. Although the idea to use historical data for a new trial is not new, literature on how to formally summarize and use these data on variances is scarce. The meta-analytic-predictive (MAP) approach consists of a random-effects meta-analysis of the historical variance data and a prediction of the variance in the new clinical trial. Two applications that rely on the MAP approach are considered: first, the selection of the sample size in the new trial, guided by the prediction of the variance; and, second, the inclusion of the predicted variance in a Bayesian analysis of the new trial. A clinical trial in patients with wet age-related macular degeneration illustrates the methodology.

Suggested Citation

  • Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
  • Handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:100-110
    DOI: 10.1016/j.csda.2016.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301888
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inoue, Lurdes Y.T. & Berry, Donald A. & Parmigiani, Giovanni, 2005. "Relationship Between Bayesian and Frequentist Sample Size Determination," The American Statistician, American Statistical Association, vol. 59, pages 79-87, February.
    2. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    3. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    4. Dean A. Follmann & Michael A. Proschan, 1999. "Valid Inference in Random Effects Meta-Analysis," Biometrics, The International Biometric Society, vol. 55(3), pages 732-737, September.
    5. Satoshi Morita & Peter F. Thall & Peter Müller, 2008. "Determining the Effective Sample Size of a Parametric Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 595-602, June.
    6. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    2. Danila Azzolina & Paola Berchialla & Silvia Bressan & Liviana Da Dalt & Dario Gregori & Ileana Baldi, 2022. "A Bayesian Sample Size Estimation Procedure Based on a B-Splines Semiparametric Elicitation Method," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    3. Egidi, Leonardo, 2022. "Effective sample size for a mixture prior," Statistics & Probability Letters, Elsevier, vol. 183(C).
    4. Beat Neuenschwander & Sebastian Weber & Heinz Schmidli & Anthony O'Hagan, 2020. "Predictively consistent prior effective sample sizes," Biometrics, The International Biometric Society, vol. 76(2), pages 578-587, June.
    5. Moreno Ursino & Nigel Stallard, 2021. "Bayesian Approaches for Confirmatory Trials in Rare Diseases: Opportunities and Challenges," IJERPH, MDPI, vol. 18(3), pages 1-9, January.
    6. repec:jss:jstsof:36:i03 is not listed on IDEAS
    7. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    8. Roland Brown & Yingling Fan & Kirti Das & Julian Wolfson, 2021. "Iterated multisource exchangeability models for individualized inference with an application to mobile sensor data," Biometrics, The International Biometric Society, vol. 77(2), pages 401-412, June.
    9. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    10. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 3," Medical Decision Making, , vol. 33(5), pages 618-640, July.
    11. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    12. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    13. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    14. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
    15. Nelson, Jon Paul, 2020. "Fixed-effect versus random-effects meta-analysis in economics: A study of pass-through rates for alcohol beverage excise taxes," Economics Discussion Papers 2020-1, Kiel Institute for the World Economy (IfW Kiel).
    16. Knapp, Guido & Hartung, Joachim, 2000. "Combined test procedures in the meta-analysis of controlled clinical trials," Technical Reports 2000,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Ibrahim Y. Tawbe, 2023. "Environmental disclosure programs and birth weight: a meta- analysis," Working Papers 2023-02, CRESE.
    18. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    19. Alberto Aiolfi & Emanuele Asti & Emanuele Rausa & Giulia Bonavina & Gianluca Bonitta & Luigi Bonavina, 2018. "Use of C-reactive protein for the early prediction of anastomotic leak after esophagectomy: Systematic review and Bayesian meta-analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.
    20. Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
    21. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:100-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.