IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2089-2102.html
   My bibliography  Save this article

Adjusting for publication bias in meta‐analysis via inverse probability weighting using clinical trial registries

Author

Listed:
  • Ao Huang
  • Kosuke Morikawa
  • Tim Friede
  • Satoshi Hattori

Abstract

Publication bias is a major concern in conducting systematic reviews and meta‐analyses. Various sensitivity analysis or bias‐correction methods have been developed based on selection models, and they have some advantages over the widely used trim‐and‐fill bias‐correction method. However, likelihood methods based on selection models may have difficulty in obtaining precise estimates and reasonable confidence intervals, or require a rather complicated sensitivity analysis process. Herein, we develop a simple publication bias adjustment method by utilizing the information on conducted but still unpublished trials from clinical trial registries. We introduce an estimating equation for parameter estimation in the selection function by regarding the publication bias issue as a missing data problem under the missing not at random assumption. With the estimated selection function, we introduce the inverse probability weighting (IPW) method to estimate the overall mean across studies. Furthermore, the IPW versions of heterogeneity measures such as the between‐study variance and the I2 measure are proposed. We propose methods to construct confidence intervals based on asymptotic normal approximation as well as on parametric bootstrap. Through numerical experiments, we observed that the estimators successfully eliminated bias, and the confidence intervals had empirical coverage probabilities close to the nominal level. On the other hand, the confidence interval based on asymptotic normal approximation is much wider in some scenarios than the bootstrap confidence interval. Therefore, the latter is recommended for practical use.

Suggested Citation

  • Ao Huang & Kosuke Morikawa & Tim Friede & Satoshi Hattori, 2023. "Adjusting for publication bias in meta‐analysis via inverse probability weighting using clinical trial registries," Biometrics, The International Biometric Society, vol. 79(3), pages 2089-2102, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2089-2102
    DOI: 10.1111/biom.13822
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13822
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kott, Phillip S. & Chang, Ted, 2010. "Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1265-1275.
    2. Wang Miao & Eric J. Tchetgen Tchetgen, 2016. "On varieties of doubly robust estimators under missingness not at random with a shadow variable," Biometrika, Biometrika Trust, vol. 103(2), pages 475-482.
    3. Yu Chen & Yachen Zhang & Yong Tang & Xiaohong Huang & Yuquan Xie, 2013. "High-Maintenance-Dose Clopidogrel in Patients Undergoing Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    4. Maya B. Mathur & Tyler J. VanderWeele, 2020. "Sensitivity analysis for publication bias in meta‐analyses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1091-1119, November.
    5. J. Copas, 1999. "What works?: selectivity models and meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 95-109.
    6. Dean A. Follmann & Michael A. Proschan, 1999. "Valid Inference in Random Effects Meta-Analysis," Biometrics, The International Biometric Society, vol. 55(3), pages 732-737, September.
    7. John B. Copas, 2013. "A likelihood-based sensitivity analysis for publication bias in meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 47-66, January.
    8. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
    9. Sue Duval & Richard Tweedie, 2000. "Trim and Fill: A Simple Funnel-Plot–Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis," Biometrics, The International Biometric Society, vol. 56(2), pages 455-463, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irsova, Zuzana & Bom, Pedro Ricardo Duarte & Havranek, Tomas & Rachinger, Heiko, 2023. "Spurious Precision in Meta-Analysis," MetaArXiv 3qp2w, Center for Open Science.
    2. Irsova, Zuzana & Doucouliagos, Hristos & Havranek, Tomas & Stanley, T. D., 2023. "Meta-Analysis of Social Science Research: A Practitioner’s Guide," EconStor Preprints 273719, ZBW - Leibniz Information Centre for Economics.
    3. Sanghyun Hong & W. Robert Reed, 2020. "Using Monte Carlo Experiments to Select Meta-Analytic Estimators," Working Papers in Economics 20/10, University of Canterbury, Department of Economics and Finance.
    4. Mengke Li & Yukun Liu & Pengfei Li & Jing Qin, 2022. "Empirical likelihood meta-analysis with publication bias correction under Copas-like selection model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 93-112, February.
    5. Robbie C M van Aert & Jelte M Wicherts & Marcel A L M van Assen, 2019. "Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-32, April.
    6. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    7. Maximilian Maier & Tyler J. VanderWeele & Maya B. Mathur, 2022. "Using selection models to assess sensitivity to publication bias: A tutorial and call for more routine use," Campbell Systematic Reviews, John Wiley & Sons, vol. 18(3), September.
    8. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    9. Jaime L. Peters & Alex J. Sutton & David R. Jones & Keith R. Abrams & Lesley Rushton & Santiago G. Moreno, 2010. "Assessing publication bias in meta‐analyses in the presence of between‐study heterogeneity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 575-591, July.
    10. Rui Duan & C. Jason Liang & Pamela Shaw & Cheng Yong Tang & Yong Chen, 2020. "Missing at Random or Not: A Semiparametric Testing Approach," Papers 2003.11181, arXiv.org.
    11. repec:jss:jstsof:36:i03 is not listed on IDEAS
    12. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    13. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    14. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    15. Damiano Pizzol & Mike Trott & Igor Grabovac & Mario Antunes & Anna Claudia Colangelo & Simona Ippoliti & Cristian Petre Ilie & Anne Carrie & Nicola Veronese & Lee Smith, 2021. "Laparoscopy in Low-Income Countries: 10-Year Experience and Systematic Literature Review," IJERPH, MDPI, vol. 18(11), pages 1-11, May.
    16. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    17. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    18. Wolfgang Goymann & John C. Wingfield, 2014. "Male-to-female testosterone ratios, dimorphism, and life history—what does it really tell us?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 685-699.
    19. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    20. Alderotti, Giammarco & Rapallini, Chiara & Traverso, Silvio, 2023. "The Big Five personality traits and earnings: A meta-analysis," Journal of Economic Psychology, Elsevier, vol. 94(C).
    21. Ünal, Zehra E. & Kartal, Gamze & Ulusoy, Serra & Ala, Aslı M. & Yilmaz, Munube & Geary, David C., 2023. "Relative contributions of g and basic domain-specific mathematics skills to complex mathematics competencies," Intelligence, Elsevier, vol. 101(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2089-2102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.