IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i2d10.1007_s10463-022-00843-5.html
   My bibliography  Save this article

Inhomogeneous hidden semi-Markov models for incompletely observed point processes

Author

Listed:
  • Amina Shahzadi

    (University of Otago
    Government College University)

  • Ting Wang

    (University of Otago)

  • Mark Bebbington

    (Massey University)

  • Matthew Parry

    (University of Otago)

Abstract

A general class of inhomogeneous hidden semi-Markov models (IHSMMs) is proposed for modelling partially observed processes that do not necessarily behave in a stationary and memoryless manner. The key feature of the proposed model is that the sojourn times of the states in the semi-Markov chain are time-dependent, making it an inhomogeneous semi-Markov chain. Conjectured consistency of the parameter estimators is checked by simulation study using direct numerical optimization of the log-likelihood function. The proposed models are applied to a global volcanic eruption catalogue to investigate the time-dependent incompleteness of the record by introducing a particular case of IHSMMs with time-dependent shifted Poisson state durations and a renewal process as the observed process. The Akaike Information Criterion and residual analysis are used to choose the best model. The selected IHSMM provides useful insights into the completeness of the global record of volcanic eruptions, demonstrating the effectiveness of this method.

Suggested Citation

  • Amina Shahzadi & Ting Wang & Mark Bebbington & Matthew Parry, 2023. "Inhomogeneous hidden semi-Markov models for incompletely observed point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 253-280, April.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:2:d:10.1007_s10463-022-00843-5
    DOI: 10.1007/s10463-022-00843-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00843-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00843-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nash, John C., 2014. "On Best Practice Optimization Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i02).
    2. Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
    3. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    4. Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
    5. Ting Wang & Mark Bebbington & David Harte, 2012. "Markov-modulated Hawkes process with stepwise decay," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 521-544, June.
    6. Wang, Ting & Bebbington, Mark, 2013. "Identifying anomalous signals in GPS data using HMMs: An increased likelihood of earthquakes?," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 27-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
    2. Bountzis, P. & Papadimitriou, E. & Tsaklidis, G., 2020. "Earthquake clusters identification through a Markovian Arrival Process (MAP): Application in Corinth Gulf (Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    4. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence and asymmetric responses between coffee varieties," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    5. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    6. Song, Jingyu & Delgado, Michael & Preckel, Paul, 2017. "Aggregated Fractional Regression Estimation: Some Monte Carlo Evidence," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258209, Agricultural and Applied Economics Association.
    7. Karatetskaya Efrosiniya & Lakshina Valeriya, 2018. "Volatility Spillovers With Spatial Effects On The Oil And Gas Market," HSE Working papers WP BRP 72/FE/2018, National Research University Higher School of Economics.
    8. Panagiotou Dimitrios & Stavrakoudis Athanassios, 2016. "Price Dependence between Different Beef Cuts and Quality Grades: A Copula Approach at the Retail Level for the U.S. Beef Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 14(1), pages 121-131, May.
    9. Varadhan, Ravi, 2014. "Numerical Optimization in R: Beyond optim," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i01).
    10. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence between coffee qualities: a copula model to evaluate asymmetric responses," MPRA Paper 75994, University Library of Munich, Germany.
    11. Rainer Hirk & Kurt Hornik & Laura Vana, 2019. "Multivariate ordinal regression models: an analysis of corporate credit ratings," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 507-539, September.
    12. Nicholas M Sutton & Michael A Weston & Patrick J Guay & Jenna Tregoweth & James P O’Dwyer, 2021. "A Bayesian optimal escape model reveals bird species differ in their capacity to habituate to humans," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1064-1074.
    13. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    14. Manuela Goretti, 2005. "The Brazilian currency turmoil of 2002: a nonlinear analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(4), pages 289-306.
    15. Barthélemy, Jean & Marx, Magali, 2017. "Solving endogenous regime switching models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 1-25.
    16. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    17. Ning, Ye & Zhang, Lingxiang, 2018. "Modeling dynamics of short-term international capital flows in China: A Markov regime switching approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 193-203.
    18. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    19. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    20. Fabra, Natalia & Toro, Juan, 2005. "Price wars and collusion in the Spanish electricity market," International Journal of Industrial Organization, Elsevier, vol. 23(3-4), pages 155-181, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:2:d:10.1007_s10463-022-00843-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.