IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i03p739-754_00.html
   My bibliography  Save this article

Identifying Restrictions For Finite Parameter Continuous Time Models With Discrete Time Data

Author

Listed:
  • Blevins, Jason R.

Abstract

This paper revisits the question of parameter identification when a linear continuous time model is sampled only at equispaced points in time. Following the framework and assumptions of Phillips (1973), we consider models characterized by first-order, linear systems of stochastic differential equations and use a priori restrictions on the model parameters as identifying restrictions. A practical rank condition is derived to test whether any particular collection of at least $\left\lfloor {n/2} \right\rfloor$ general linear restrictions on the parameter matrix is sufficient for identification. We then consider extensions to incorporate prior restrictions on the covariance matrix of the disturbances, to identify the covariance matrix itself, and to address identification in models with cointegration.

Suggested Citation

  • Blevins, Jason R., 2017. "Identifying Restrictions For Finite Parameter Continuous Time Models With Discrete Time Data," Econometric Theory, Cambridge University Press, vol. 33(3), pages 739-754, June.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:03:p:739-754_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466615000353/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    2. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    3. Nail Kashaev & Natalia Lazzati, 2019. "Peer Effects in Random Consideration Sets," Papers 1904.06742, arXiv.org, revised May 2021.
    4. Hong, Han & Li, Weiming & Wang, Boyu, 2015. "Estimation of dynamic discrete models from time aggregated data," Journal of Econometrics, Elsevier, vol. 188(2), pages 435-446.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:03:p:739-754_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.