IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v121y2017icp90-98.html
   My bibliography  Save this article

A note on estimating cumulative distribution functions by the use of convolution power kernels

Author

Listed:
  • Funke, Benedikt
  • Palmes, Christian

Abstract

Our paper investigates the nonparametric estimation of cumulative distribution functions of nonnegative valued random variables using convolution power kernels. Our proposed consistent estimator avoids boundary effects near the origin. We present its asymptotic properties and give a short simulation study.

Suggested Citation

  • Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
  • Handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:90-98
    DOI: 10.1016/j.spl.2016.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216302115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    2. Rong Liu & Lijian Yang, 2008. "Kernel estimation of multivariate cumulative distribution function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 661-677.
    3. Jones, M. C., 1990. "The performance of kernel density functions in kernel distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 129-132, February.
    4. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Blanke & D. Bosq, 2018. "Polygonal smoothing of the empirical distribution function," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 263-287, July.
    2. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    3. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    4. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    5. Yousef, Waleed A. & Kundu, Subrata & Wagner, Robert F., 2009. "Nonparametric estimation of the threshold at an operating point on the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4370-4383, October.
    6. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    7. Weining Shen & Jing Ning & Ying Yuan & Anna S. Lok & Ziding Feng, 2018. "Model†free scoring system for risk prediction with application to hepatocellular carcinoma study," Biometrics, The International Biometric Society, vol. 74(1), pages 239-248, March.
    8. Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2019. "Data Driven Regulation: Theory and Application to Missing Bids," Boston University - Department of Economics - Working Papers Series WP2019-04, Boston University - Department of Economics.
    9. Jeffrey Racine, 2015. "Mixed data kernel copulas," Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
    10. Belalia, Mohamed, 2016. "On the asymptotic properties of the Bernstein estimator of the multivariate distribution function," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 249-256.
    11. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2017. "Smooth copula-based estimation of the conditional density function with a single covariate," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 39-48.
    12. Lan Xue & Jing Wang, 2010. "Distribution function estimation by constrained polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 443-457.
    13. Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
    14. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    15. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    16. Paolo Brunori & Guido Neidhöfer, 2021. "The Evolution of Inequality of Opportunity in Germany: A Machine Learning Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(4), pages 900-927, December.
    17. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
    18. Minglu Ma & Qiang Wang, 2022. "Assessment and Forecast of Green Total Factor Energy Efficiency in the Yellow River Basin—A Perspective Distinguishing the Upper, Middle and Lower Stream," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    19. Shingo Shirahata & In-Sun Chu, 1992. "Integrated squared error of kernel-type estimator of distribution function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(3), pages 579-591, September.
    20. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:90-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.