IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v121y2017icp90-98.html
   My bibliography  Save this article

A note on estimating cumulative distribution functions by the use of convolution power kernels

Author

Listed:
  • Funke, Benedikt
  • Palmes, Christian

Abstract

Our paper investigates the nonparametric estimation of cumulative distribution functions of nonnegative valued random variables using convolution power kernels. Our proposed consistent estimator avoids boundary effects near the origin. We present its asymptotic properties and give a short simulation study.

Suggested Citation

  • Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
  • Handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:90-98
    DOI: 10.1016/j.spl.2016.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216302115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong Liu & Lijian Yang, 2008. "Kernel estimation of multivariate cumulative distribution function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 661-677.
    2. Jones, M. C., 1990. "The performance of kernel density functions in kernel distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 129-132, February.
    3. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
    4. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    2. D. Blanke & D. Bosq, 2018. "Polygonal smoothing of the empirical distribution function," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 263-287, July.
    3. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    4. Jeffrey Racine, 2015. "Mixed data kernel copulas," Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
    5. Lan Xue & Jing Wang, 2010. "Distribution function estimation by constrained polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 443-457.
    6. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    7. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
    8. Minglu Ma & Qiang Wang, 2022. "Assessment and Forecast of Green Total Factor Energy Efficiency in the Yellow River Basin—A Perspective Distinguishing the Upper, Middle and Lower Stream," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    9. Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
    10. Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
    11. Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    12. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    13. Douglas Mossman & Hongying Peng, 2016. "Using Dual Beta Distributions to Create “Proper†ROC Curves Based on Rating Category Data," Medical Decision Making, , vol. 36(3), pages 349-365, April.
    14. Paolo Brunori & Guido Neidhöfer, 2021. "The Evolution of Inequality of Opportunity in Germany: A Machine Learning Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(4), pages 900-927, December.
    15. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    16. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    17. Serge B. Provost & Yishan Zang, 2024. "Nonparametric Copula Density Estimation Methodologies," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    18. Ghosh, Sujit K. & Burns, Christopher B. & Prager, Daniel L. & Zhang, Li & Hui, Glenn, 2018. "On nonparametric estimation of the latent distribution for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 86-98.
    19. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    20. Li, Genyuan & Rabitz, Herschel, 2017. "Relationship between sensitivity indices defined by variance- and covariance-based methods," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 136-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:121:y:2017:i:c:p:90-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.