IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i9d10.1007_s00362-024-01613-6.html
   My bibliography  Save this article

On limiting behaviors of stepwise multiple testing procedures

Author

Listed:
  • Monitirtha Dey

    (University of Bremen)

Abstract

Stepwise multiple testing procedures have attracted several statisticians for decades and are also quite popular with statistics users because of their technical simplicity. The Bonferroni procedure has been one of the earliest and most prominent testing rules for controlling the familywise error rate (FWER). A recent article established that the FWER for the Bonferroni method asymptotically (i.e., when the number of hypotheses becomes arbitrarily large) approaches zero under any positively equicorrelated multivariate normal framework. However, similar results for the limiting behaviors of FWER of general stepwise procedures are nonexistent. The present work addresses this gap in a unified manner by elucidating that, under the multivariate normal setups with some correlation structures, the probability of rejecting one or more null hypotheses approaches zero asymptotically for any step-down procedure. Consequently, the FWER and power of the step-down procedures also tend to be asymptotically zero. We also establish similar limiting zero results on FWER of other popular multiple testing rules, e.g., Hochberg’s and Hommel’s procedures. It turns out that, within our chosen asymptotic framework, the Benjamini–Hochberg method can hold the FWER at a strictly positive level asymptotically under the equicorrelated normality.

Suggested Citation

  • Monitirtha Dey, 2024. "On limiting behaviors of stepwise multiple testing procedures," Statistical Papers, Springer, vol. 65(9), pages 5691-5717, December.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01613-6
    DOI: 10.1007/s00362-024-01613-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01613-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01613-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yifan Huang & Jason C. Hsu, 2007. "Hochberg's Step-Up Method: Cutting Corners Off Holm's Step-Down Method," Biometrika, Biometrika Trust, vol. 94(4), pages 965-975.
    2. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    3. Jiangtao Gou & Ajit C. Tamhane & Dong Xi & Dror Rom, 2014. "A class of improved hybrid Hochberg–Hommel type step-up multiple test procedures," Biometrika, Biometrika Trust, vol. 101(4), pages 899-911.
    4. Gordana Derado & F. DuBois Bowman & Clinton D. Kilts, 2010. "Modeling the Spatial and Temporal Dependence in fMRI Data," Biometrics, The International Biometric Society, vol. 66(3), pages 949-957, September.
    5. Guo, Wenge & Bhaskara Rao, M., 2008. "On optimality of the Benjamini-Hochberg procedure for the false discovery rate," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2024-2030, October.
    6. Gordon, Alexander Y. & Salzman, Peter, 2008. "Optimality of the Holm procedure among general step-down multiple testing procedures," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1878-1884, September.
    7. Roy, Rahul & Bhandari, Subir Kumar, 2024. "Asymptotic Bayes’ optimality under sparsity for exchangeable dependent multivariate normal test statistics," Statistics & Probability Letters, Elsevier, vol. 207(C).
    8. Efron, Bradley, 2007. "Correlation and Large-Scale Simultaneous Significance Testing," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 93-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noirrit Kiran Chandra & Sourabh Bhattacharya, 2021. "Asymptotic theory of dependent Bayesian multiple testing procedures under possible model misspecification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 891-920, October.
    2. Lee, Donghwan & Lee, Youngjo, 2016. "Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 1-13.
    3. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    4. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    5. Pallavi Basu & Luella Fu & Alessio Saretto & Wenguang Sun, 2021. "Empirical Bayes Control of the False Discovery Exceedance," Working Papers 2115, Federal Reserve Bank of Dallas.
    6. Jeng, X. Jessie & Chen, Xiongzhi, 2019. "Predictor ranking and false discovery proportion control in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 163-175.
    7. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    8. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    9. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    10. Daniel Yekutieli, 2015. "Bayesian tests for composite alternative hypotheses in cross-tabulated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 287-301, June.
    11. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    12. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    13. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    14. Gómez-Villegas Miguel A. & Salazar Isabel & Sanz Luis, 2014. "A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 49-65, February.
    15. Chen, Yunxiao & Li, Xiaoou, 2023. "Compound sequential change-point detection in parallel data streams," LSE Research Online Documents on Economics 111010, London School of Economics and Political Science, LSE Library.
    16. Edsel Peña & Joshua Habiger & Wensong Wu, 2015. "Classes of multiple decision functions strongly controlling FWER and FDR," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 563-595, July.
    17. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    18. Joshua Habiger & David Watts & Michael Anderson, 2017. "Multiple testing with heterogeneous multinomial distributions," Biometrics, The International Biometric Society, vol. 73(2), pages 562-570, June.
    19. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    20. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01613-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.