IDEAS home Printed from https://ideas.repec.org/p/ira/wpaper/202215.html
   My bibliography  Save this paper

"Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"

Author

Listed:
  • Xenxo Vidal-Llana

    (Universitat de Barcelona. Gran Via de les Corts Catalanes 585. 08007 Barcelona, Spain.)

  • Carlos Salort Sánchez

    (Universitat de Barcelona. Gran Via de les Corts Catalanes 585. 08007 Barcelona, Spain.)

  • Vincenzo Coia

    (University of British Columbia. West Mall 2329. Vancouver, BC Canada.)

  • Montserrat Guillen

    (Gran Via de les Corts Catalanes 585. 08007 Barcelona, Spain.)

Abstract

When datasets present long conditional tails on their response variables, algorithms based on Quantile Regression have been widely used to assess extreme quantile behaviors. Value at Risk (VaR) and Conditional Tail Expectation (CTE) allow the evaluation of extreme events to be easily interpretable. The state-of-the-art methodologies to estimate VaR and CTE controlled by covariates are mainly based on linear quantile regression, and usually do not have in consideration non-crossing conditions across VaRs and their associated CTEs. We implement a non-crossing neural network that estimates both statistics simultaneously, for several quantile levels and ensuring a list of non-crossing conditions. We illustrate our method with a household energy consumption dataset from 2015 for quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99, and show its improvements against a Monotone Composite Quantile Regression Neural Network approximation.

Suggested Citation

  • Xenxo Vidal-Llana & Carlos Salort Sánchez & Vincenzo Coia & Montserrat Guillen, 2022. ""Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"," IREA Working Papers 202215, University of Barcelona, Research Institute of Applied Economics, revised Oct 2022.
  • Handle: RePEc:ira:wpaper:202215
    as

    Download full text from publisher

    File URL: http://www.ub.edu/irea/working_papers/2022/202215.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    4. Guillen, Montserrat & Bermúdez, Lluís & Pitarque, Albert, 2021. "Joint generalized quantile and conditional tail expectation regression for insurance risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 1-8.
    5. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    6. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    7. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    9. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    10. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    11. Andrew J. Patton, 2020. "Comparing Possibly Misspecified Forecasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 796-809, October.
    12. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez-Marín & Valandis Elpidorou, 2020. "Can Automobile Insurance Telematics Predict the Risk of Near-Miss Events?," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(1), pages 141-152, January.
    13. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    14. Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
    15. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    16. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    17. Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
    18. Johanna F Ziegel & Fabian Krüger & Alexander Jordan & Fernando Fasciati, 2020. "Robust Forecast Evaluation of Expected Shortfall [Designing Realized Kernels to Measure the Ex Post Variation of Equity Prices in the Presence of Noise]," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 18(1), pages 95-120.
    19. Gordon M. Bodnar & Gregory S. Hayt & Richard C. Marston, 1998. "1998 Wharton Survey of Financial Risk Management by US Non-Financial Firms," Financial Management, Financial Management Association, vol. 27(4), Winter.
    20. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    21. Zhang, Lei, 2016. "Flood hazards impact on neighborhood house prices: A spatial quantile regression analysis," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 12-19.
    22. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    2. Vidal-Llana, Xenxo & Guillén, Montserrat, 2022. "Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    3. Fissler, Tobias & Merz, Michael & Wüthrich, Mario V., 2023. "Deep quantile and deep composite triplet regression," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 94-112.
    4. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    5. Takaaki Koike & Cathy W. S. Chen & Edward M. H. Lin, 2024. "Forecasting and Backtesting Gradient Allocations of Expected Shortfall," Papers 2401.11701, arXiv.org, revised Jun 2024.
    6. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    7. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    8. Tobias Fissler & Yannick Hoga, 2021. "Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability," Papers 2104.10673, arXiv.org, revised Feb 2022.
    9. Guillen, Montserrat & Bermúdez, Lluís & Pitarque, Albert, 2021. "Joint generalized quantile and conditional tail expectation regression for insurance risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 1-8.
    10. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    11. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    12. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    13. Mitrodima, Gelly & Oberoi, Jaideep, 2024. "CAViaR models for Value-at-Risk and Expected Shortfall with long range dependency features," LSE Research Online Documents on Economics 120880, London School of Economics and Political Science, LSE Library.
    14. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2022. "Characterizing M-estimators," Papers 2208.08108, arXiv.org.
    15. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    16. Cathy W. S. Chen & Takaaki Koike & Wei‐Hsuan Shau, 2024. "Tail risk forecasting with semiparametric regression models by incorporating overnight information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1492-1512, August.
    17. Oh, Dong Hwan & Patton, Andrew J., 2024. "Better the devil you know: Improved forecasts from imperfect models," Journal of Econometrics, Elsevier, vol. 242(1).
    18. Fritzsch, Simon & Timphus, Maike & Weiß, Gregor, 2024. "Marginals versus copulas: Which account for more model risk in multivariate risk forecasting?," Journal of Banking & Finance, Elsevier, vol. 158(C).
    19. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.

    More about this item

    Keywords

    Risk evaluation; Deep learning; Extreme quantiles. JEL classification: C31; C45; C52.;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ira:wpaper:202215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alicia García (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.