IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v33y2006i5p535-547.html
   My bibliography  Save this article

Modelling seasonally varying data: A case study for Sudden Infant Death Syndrome (SIDS)

Author

Listed:
  • Jennifer Mooney
  • Ian Jolliffe
  • Peter Helms

Abstract

Many time series are measured monthly, either as averages or totals, and such data often exhibit seasonal variability - the values of the series are consistently larger for some months of the year than for others. A typical series of this type is the number of deaths each month attributed to SIDS (Sudden Infant Death Syndrome). Seasonality can be modelled in a number of ways. This paper describes and discusses various methods for modelling seasonality in SIDS data, though much of the discussion is relevant to other seasonally varying data. There are two main approaches, either fitting a circular probability distribution to the data, or using regression-based techniques to model the mean seasonal behaviour. Both are discussed in this paper.

Suggested Citation

  • Jennifer Mooney & Ian Jolliffe & Peter Helms, 2006. "Modelling seasonally varying data: A case study for Sudden Infant Death Syndrome (SIDS)," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(5), pages 535-547.
  • Handle: RePEc:taf:japsta:v:33:y:2006:i:5:p:535-547
    DOI: 10.1080/2664760600585642
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/2664760600585642
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/2664760600585642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mooney, Jennifer & Helms, Peter J. & Jolliffe, Ian T., 2003. "Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 505-513, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Liu & T. Ma & A. SenGupta & K. Shimizu & M.-Z. Wang, 2017. "Influence Diagnostics in Possibly Asymmetric Circular-Linear Multivariate Regression Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-93, May.
    2. Toshihiro Abe & Arthur Pewsey & Kunio Shimizu, 2013. "Extending circular distributions through transformation of argument," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 833-858, October.
    3. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. José T.A.S. Ferreira & Miguel A Juárez & MArk F.J. Steel, 2005. "Directional Log-spline Distributions," Econometrics 0511001, University Library of Munich, Germany.
    4. Carnicero, José Antonio, 2010. "Circular Bernstein polynomial distributions," DES - Working Papers. Statistics and Econometrics. WS ws102511, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Tyler H. McCormick & Tian Zheng, 2015. "Latent Surface Models for Networks Using Aggregated Relational Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1684-1695, December.
    6. J. J. Fernández-Durán, 2007. "Models for Circular–Linear and Circular–Circular Data Constructed from Circular Distributions Based on Nonnegative Trigonometric Sums," Biometrics, The International Biometric Society, vol. 63(2), pages 579-585, June.
    7. Mojtaba Hatami & Mohammad Hossein Alamatsaz, 2019. "Skew-symmetric circular distributions and their structural properties," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 953-969, December.
    8. Toshihiro Abe & Arthur Pewsey & Kunio Shimizu, 2013. "Extending circular distributions through transformation of argument," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 833-858, October.
    9. Oliveira, M. & Crujeiras, R.M. & Rodríguez-Casal, A., 2012. "A plug-in rule for bandwidth selection in circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3898-3908.
    10. Domien Craens & Christophe Ley, 2018. "Analysis of Biological and Biomedical Data with Circular Statistics," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(5), pages 141-143, March.
    11. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.
    12. J. J. Fernández-Durán, 2004. "Circular Distributions Based on Nonnegative Trigonometric Sums," Biometrics, The International Biometric Society, vol. 60(2), pages 499-503, June.
    13. Oliveira, María & Crujeiras, Rosa M. & Rodríguez-Casal, Alberto, 2014. "NPCirc: An R Package for Nonparametric Circular Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i09).
    14. Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:33:y:2006:i:5:p:535-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.