IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v55y2003i3p639-653.html
   My bibliography  Save this article

A new class of metric divergences on probability spaces and its applicability in statistics

Author

Listed:
  • Ferdinand Österreicher
  • Igor Vajda

Abstract

No abstract is available for this item.

Suggested Citation

  • Ferdinand Österreicher & Igor Vajda, 2003. "A new class of metric divergences on probability spaces and its applicability in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 639-653, September.
  • Handle: RePEc:spr:aistmt:v:55:y:2003:i:3:p:639-653
    DOI: 10.1007/BF02517812
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02517812
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02517812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    2. L. Györfi & I. Vajda & E. Meulen, 1996. "Minimum kolmogorov distance estimates of parameters and parametrized distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 43(1), pages 237-255, December.
    3. Pak, Ro Jin, 1996. "Minimum Hellinger distance estimation in simple linear regression models; distribution and efficiency," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 263-269, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.
    2. Tsagris, Michail, 2014. "The k-NN algorithm for compositional data: a revised approach with and without zero values present," MPRA Paper 65866, University Library of Munich, Germany.
    3. Boussalis, Constantine & Dukalskis, Alexander & Gerschewski, Johannes, 2022. "Why It Matters What Autocrats Say: Assessing Competing Theories of Propaganda," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 70(3), pages 241-252.
    4. Osán, Tristán M. & Bussandri, Diego G. & Lamberti, Pedro W., 2018. "Monoparametric family of metrics derived from classical Jensen–Shannon divergence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 336-344.
    5. Leila M Naeni & Hugh Craig & Regina Berretta & Pablo Moscato, 2016. "A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-27, August.
    6. Michail Tsagris & Simon Preston & Andrew T. A. Wood, 2016. "Improved Classification for Compositional Data Using the α-transformation," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 243-261, July.
    7. Topsøe, Flemming, 2004. "Entropy and equilibrium via games of complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 11-31.
    8. Papastamoulis Panagiotis & Rattray Magnus, 2017. "Bayesian estimation of differential transcript usage from RNA-seq data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 387-405, December.
    9. Yu, Xisheng, 2021. "A unified entropic pricing framework of option: Using Cressie-Read family of divergences," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    10. Yan Zhihua & Tang Xijin, 2020. "Exploring Evolution of Public Opinions on Tianya Club Using Dynamic Topic Models," Journal of Systems Science and Information, De Gruyter, vol. 8(4), pages 309-324, August.
    11. Tsagris, Michail, 2015. "A novel, divergence based, regression for compositional data," MPRA Paper 72769, University Library of Munich, Germany.
    12. Gómez-Lopera, J.F. & Martínez-Aroza, J. & Rodríguez-Valverde, M.A. & Cabrerizo-Vílchez, M.A. & Montes-Ruíz-Cabello, F.J., 2015. "Entropic image segmentation of sessile drops over patterned acetate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 239-247.
    13. Osán, T.M. & Bussandri, D.G. & Lamberti, P.W., 2022. "Quantum metrics based upon classical Jensen–Shannon divergence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    14. Sagron, Ruth & Pugatch, Rami, 2021. "Universal distribution of batch completion times and time-cost tradeoff in a production line with arbitrary buffer size," European Journal of Operational Research, Elsevier, vol. 293(3), pages 980-989.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ro Pak & Ayanendranath Basu, 1998. "Minimum Disparity Estimation in Linear Regression Models: Distribution and Efficiency," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 503-521, September.
    2. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    3. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    4. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    5. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    6. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    7. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    8. Stephen Satchell & Susan Thorp & Oliver Williams, 2012. "Estimating Consumption Plans for Recursive Utility by Maximum Entropy Methods," Research Paper Series 300, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Zhan, Tingting & Chevoneva, Inna & Iglewicz, Boris, 2011. "Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 457-465, January.
    10. Morales, D. & Pardo, L. & Vajda, I., 1997. "Some New Statistics for Testing Hypotheses in Parametric Models, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 137-168, July.
    11. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    12. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    13. Park, Chanseok & Basu, Ayanendranath & G. Lindsay, Bruce, 2002. "The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 21-33, March.
    14. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    15. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    16. David T. Frazier, 2020. "Robust and Efficient Approximate Bayesian Computation: A Minimum Distance Approach," Papers 2006.14126, arXiv.org.
    17. A. Basu & S. Sarkar, 1997. "Robust estimation in the errors variables model via weighted likelihood estimating equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 187-203, June.
    18. Pak, Ro Jin, 1996. "Minimum Hellinger distance estimation in simple linear regression models; distribution and efficiency," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 263-269, February.
    19. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    20. Max Wornowizki & Roland Fried, 2016. "Two-sample homogeneity tests based on divergence measures," Computational Statistics, Springer, vol. 31(1), pages 291-313, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:55:y:2003:i:3:p:639-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.