IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v16y2017i5-6p367-386n5.html
   My bibliography  Save this article

Bayesian estimation of differential transcript usage from RNA-seq data

Author

Listed:
  • Papastamoulis Panagiotis

    (Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PL, UK)

  • Rattray Magnus

    (Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK)

Abstract

Next generation sequencing allows the identification of genes consisting of differentially expressed transcripts, a term which usually refers to changes in the overall expression level. A specific type of differential expression is differential transcript usage (DTU) and targets changes in the relative within gene expression of a transcript. The contribution of this paper is to: (a) extend the use of cjBitSeq to the DTU context, a previously introduced Bayesian model which is originally designed for identifying changes in overall expression levels and (b) propose a Bayesian version of DRIMSeq, a frequentist model for inferring DTU. cjBitSeq is a read based model and performs fully Bayesian inference by MCMC sampling on the space of latent state of each transcript per gene. BayesDRIMSeq is a count based model and estimates the Bayes Factor of a DTU model against a null model using Laplace’s approximation. The proposed models are benchmarked against the existing ones using a recent independent simulation study as well as a real RNA-seq dataset. Our results suggest that the Bayesian methods exhibit similar performance with DRIMSeq in terms of precision/recall but offer better calibration of False Discovery Rate.

Suggested Citation

  • Papastamoulis Panagiotis & Rattray Magnus, 2017. "Bayesian estimation of differential transcript usage from RNA-seq data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 387-405, December.
  • Handle: RePEc:bpj:sagmbi:v:16:y:2017:i:5-6:p:367-386:n:5
    DOI: 10.1515/sagmb-2017-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2017-0005
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2017-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferdinand Österreicher & Igor Vajda, 2003. "A new class of metric divergences on probability spaces and its applicability in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 639-653, September.
    2. Papastamoulis, Panagiotis & Iliopoulos, George, 2009. "Reversible Jump MCMC in mixtures of normal distributions with the same component means," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 900-911, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    2. Osán, T.M. & Bussandri, D.G. & Lamberti, P.W., 2022. "Quantum metrics based upon classical Jensen–Shannon divergence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    3. Papastamoulis, Panagiotis, 2016. "label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(c01).
    4. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.
    5. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    6. Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
    7. Sagron, Ruth & Pugatch, Rami, 2021. "Universal distribution of batch completion times and time-cost tradeoff in a production line with arbitrary buffer size," European Journal of Operational Research, Elsevier, vol. 293(3), pages 980-989.
    8. Osán, Tristán M. & Bussandri, Diego G. & Lamberti, Pedro W., 2018. "Monoparametric family of metrics derived from classical Jensen–Shannon divergence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 336-344.
    9. Michail Tsagris & Simon Preston & Andrew T. A. Wood, 2016. "Improved Classification for Compositional Data Using the α-transformation," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 243-261, July.
    10. Tsagris, Michail, 2014. "The k-NN algorithm for compositional data: a revised approach with and without zero values present," MPRA Paper 65866, University Library of Munich, Germany.
    11. Tsagris, Michail, 2015. "A novel, divergence based, regression for compositional data," MPRA Paper 72769, University Library of Munich, Germany.
    12. Liu, Hefei & Song, Xinyuan, 2021. "Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states," Econometrics and Statistics, Elsevier, vol. 18(C), pages 29-43.
    13. Yu, Xisheng, 2021. "A unified entropic pricing framework of option: Using Cressie-Read family of divergences," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. Topsøe, Flemming, 2004. "Entropy and equilibrium via games of complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 11-31.
    15. Gómez-Lopera, J.F. & Martínez-Aroza, J. & Rodríguez-Valverde, M.A. & Cabrerizo-Vílchez, M.A. & Montes-Ruíz-Cabello, F.J., 2015. "Entropic image segmentation of sessile drops over patterned acetate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 239-247.
    16. Yan Zhihua & Tang Xijin, 2020. "Exploring Evolution of Public Opinions on Tianya Club Using Dynamic Topic Models," Journal of Systems Science and Information, De Gruyter, vol. 8(4), pages 309-324, August.
    17. Leila M Naeni & Hugh Craig & Regina Berretta & Pablo Moscato, 2016. "A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-27, August.
    18. De Keyser, Steven & Gijbels, Irène, 2024. "Parametric dependence between random vectors via copula-based divergence measures," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    19. Boussalis, Constantine & Dukalskis, Alexander & Gerschewski, Johannes, 2022. "Why It Matters What Autocrats Say: Assessing Competing Theories of Propaganda," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 70(3), pages 241-252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:16:y:2017:i:5-6:p:367-386:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.