IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v8y2020i4p309-324n2.html
   My bibliography  Save this article

Exploring Evolution of Public Opinions on Tianya Club Using Dynamic Topic Models

Author

Listed:
  • Yan Zhihua

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China)

  • Tang Xijin

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China)

Abstract

Online media have brought tremendous changes to civic life, public opinions, and government administration. Compared with traditional media, online media not only allow individuals to browse news and express their views more freely, but also accelerate the transmission of opinions and expand influence. As public opinions may arouse societal unrest, it is worth detecting the primary topics and uncovering the evolution trends of public opinions for societal administration. Various algorithms are developed to deal with the huge volume of unstructured online media data. In this study, dynamic topic model is employed to explore topic content evolution and prevalence evolution using the original posts published from 2013 to 2017 on the Tianya Zatan Board of Tianya Club, which is one of the most popular BBS in China. Based on semantic similarities, topics are grouped into three themes: Family life, societal affairs, and government administration. The evolution of topic prevalence and content are affected by emergent incidents. Topics on family life become popular, while themes “societal affairs” and “government administration” with bigger standard deviations are more likely to be influenced by emergent hot events. Content evolution represented by monthly pairwise distance matrix is very easy to find change points of topic content.

Suggested Citation

  • Yan Zhihua & Tang Xijin, 2020. "Exploring Evolution of Public Opinions on Tianya Club Using Dynamic Topic Models," Journal of Systems Science and Information, De Gruyter, vol. 8(4), pages 309-324, August.
  • Handle: RePEc:bpj:jossai:v:8:y:2020:i:4:p:309-324:n:2
    DOI: 10.21078/JSSI-2020-309-16
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2020-309-16
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2020-309-16?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaomei Chen & Fidelia Ibekwe‐SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple‐perspective cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    2. Loet Leydesdorff & Adina Nerghes, 2017. "Co-word maps and topic modeling: A comparison using small and medium-sized corpora (N > 1,000)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 1024-1035, April.
    3. Ferdinand Österreicher & Igor Vajda, 2003. "A new class of metric divergences on probability spaces and its applicability in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 639-653, September.
    4. Greene, Derek & Cross, James P., 2017. "Exploring the Political Agenda of the European Parliament Using a Dynamic Topic Modeling Approach," Political Analysis, Cambridge University Press, vol. 25(1), pages 77-94, January.
    5. Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
    6. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    7. Wanying Ding & Chaomei Chen, 2014. "Dynamic topic detection and tracking: A comparison of HDP, C-word, and cocitation methods," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(10), pages 2084-2097, October.
    8. Lu, Louis Y.Y. & Liu, John S., 2016. "A novel approach to identify the major research themes and development trajectory: The case of patenting research," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 71-82.
    9. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Xiaojing Cai & Caroline V. Fry & Mengjia Wu & Caroline S. Wagner, 2021. "Topic evolution, disruption and resilience in early COVID-19 research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4225-4253, May.
    2. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    3. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    4. Kamal Sanguri & Atanu Bhuyan & Sabyasachi Patra, 2020. "A semantic similarity adjusted document co-citation analysis: a case of tourism supply chain," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 233-269, October.
    5. Yanto Chandra, 2018. "Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-24, January.
    6. Kamila Widziewicz-Rzońca & Malwina Tytła, 2020. "First systematic review on PM-bound water: exploring the existing knowledge domain using the CiteSpace software," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1945-2008, September.
    7. Huaruo Chen & Tingting Fang & Fan Liu & Liman Pang & Ya Wen & Shi Chen & Xueying Gu, 2020. "Career Adaptability Research: A Literature Review with Scientific Knowledge Mapping in Web of Science," IJERPH, MDPI, vol. 17(16), pages 1-21, August.
    8. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    9. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    10. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    11. Yuhanis Ladewi & Meiryani Meiryani & Ahmad Syamil & Agustini Agustini & Agustinus Winoto, 2024. "The Relation between Climate Change and Carbon Emission Trading: A Bibliometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 686-697, January.
    12. Honglei Liu & Jiule Song & Guangbin Wang, 2021. "A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    13. Jiaxing Jiang & Lin Fan, 2022. "Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440211, January.
    14. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    15. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    16. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    17. Maria Helena Pestana & Artur Parreira & Wan-Chen Wang, 2019. "Bibliometric Analysis and Trends: An Application in Senior Tourism," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 18(3), pages 329-345, December.
    18. Zhibin Peng & Omid Khatin-Zadeh, 2023. "Research on metaphor processing during the past five decades: a bibliometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    19. Feng Huang & Danrong Zhang & Xi Chen, 2019. "Vegetation Response to Groundwater Variation in Arid Environments: Visualization of Research Evolution, Synthesis of Response Types, and Estimation of Groundwater Threshold," IJERPH, MDPI, vol. 16(10), pages 1-15, May.
    20. Xin Mai & Roger C. K. Chan, 2020. "Detecting the intellectual pathway of resilience thinking in urban and regional studies: A critical reflection on resilience literature," Growth and Change, Wiley Blackwell, vol. 51(3), pages 876-889, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:8:y:2020:i:4:p:309-324:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.