IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v40y2023i1d10.1007_s00357-022-09422-y.html
   My bibliography  Save this article

Imputation Strategies for Clustering Mixed-Type Data with Missing Values

Author

Listed:
  • Rabea Aschenbruck

    (Hochschule Stralsund - University of Applied Sciences)

  • Gero Szepannek

    (Hochschule Stralsund - University of Applied Sciences)

  • Adalbert F. X. Wilhelm

    (Jacobs University Bremen)

Abstract

Incomplete data sets with different data types are difficult to handle, but regularly to be found in practical clustering tasks. Therefore in this paper, two procedures for clustering mixed-type data with missing values are derived and analyzed in a simulation study with respect to the factors of partition, prototypes, imputed values, and cluster assignment. Both approaches are based on the k-prototypes algorithm (an extension of k-means), which is one of the most common clustering methods for mixed-type data (i.e., numerical and categorical variables). For k-means clustering of incomplete data, the k-POD algorithm recently has been proposed, which imputes the missings with values of the associated cluster center. We derive an adaptation of the latter and additionally present a cluster aggregation strategy after multiple imputation. It turns out that even a simplified and time-saving variant of the presented method can compete with multiple imputation and subsequent pooling.

Suggested Citation

  • Rabea Aschenbruck & Gero Szepannek & Adalbert F. X. Wilhelm, 2023. "Imputation Strategies for Clustering Mixed-Type Data with Missing Values," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 2-24, April.
  • Handle: RePEc:spr:jclass:v:40:y:2023:i:1:d:10.1007_s00357-022-09422-y
    DOI: 10.1007/s00357-022-09422-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-022-09422-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-022-09422-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Jocelyn T. Chi & Eric C. Chi & Richard G. Baraniuk, 2016. "k -POD: A Method for k -Means Clustering of Missing Data," The American Statistician, Taylor & Francis Journals, vol. 70(1), pages 91-99, February.
    4. White, Ian R. & Daniel, Rhian & Royston, Patrick, 2010. "Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2267-2275, October.
    5. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    6. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    7. Christian Hennig & Tim F. Liao, 2013. "How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(3), pages 309-369, May.
    8. Laura J. van 't Veer & Hongyue Dai & Marc J. van de Vijver & Yudong D. He & Augustinus A. M. Hart & Mao Mao & Hans L. Peterse & Karin van der Kooy & Matthew J. Marton & Anke T. Witteveen & George J. S, 2002. "Gene expression profiling predicts clinical outcome of breast cancer," Nature, Nature, vol. 415(6871), pages 530-536, January.
    9. Shuang Yin & Guojun Gan & Emiliano A. Valdez & Jeyaraj Vadiveloo, 2021. "Applications of Clustering with Mixed Type Data in Life Insurance," Risks, MDPI, vol. 9(3), pages 1-19, March.
    10. Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.
    11. Rainer Dangl & Friedrich Leisch, 2020. "Effects of Resampling in Determining the Number of Clusters in a Data Set," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 558-583, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Williams, Randi M. & Zhang, Jing & Woodard, Nathaniel & Slade, Jimmie & Santos, Sherie Lou Zara & Knott, Cheryl L., 2020. "Development and validation of an instrument to assess institutionalization of health promotion in faith-based organizations," Evaluation and Program Planning, Elsevier, vol. 79(C).
    2. Mingyang Cai & Gerko Vink, 2022. "A note on imputing squares via polynomial combination approach," Computational Statistics, Springer, vol. 37(5), pages 2185-2201, November.
    3. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    4. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.
    5. Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.
    6. Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    7. Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.
    8. Michael D. Teter & Johannes O. Royset & Alexandra M. Newman, 2019. "Modeling uncertainty of expert elicitation for use in risk-based optimization," Annals of Operations Research, Springer, vol. 280(1), pages 189-210, September.
    9. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    10. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    11. Marco Geraci & Alexander McLain, 2018. "Multiple Imputation for Bounded Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 919-940, December.
    12. Jensen, Are & Clausen, Tommy H., 2017. "Origins and emergence of exploration and exploitation capabilities in new technology-based firms," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 163-175.
    13. Ann-Marie Küchler & Dana Schultchen & Tim Dretzler & Morten Moshagen & David D. Ebert & Harald Baumeister, 2023. "A Three-Armed Randomized Controlled Trial to Evaluate the Effectiveness, Acceptance, and Negative Effects of StudiCare Mindfulness, an Internet- and Mobile-Based Intervention for College Students with," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    14. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    15. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    16. Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
    17. Morris A. Davis & William D. Larson & Stephen D. Oliner & Benjamin Smith, 2019. "Mortgage Risk Since 1990," FHFA Staff Working Papers 19-02, Federal Housing Finance Agency.
    18. Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
    19. Vincent Audigier & Ndèye Niang, 2023. "Clustering with missing data: which equivalent for Rubin’s rules?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 623-657, September.
    20. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:40:y:2023:i:1:d:10.1007_s00357-022-09422-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.