IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v16y2022i4d10.1007_s11634-021-00463-6.html
   My bibliography  Save this article

A comparison of two dissimilarity functions for mixed-type predictor variables in the $$\delta $$ δ -machine

Author

Listed:
  • Beibei Yuan

    (Leiden University)

  • Willem Heiser

    (Leiden University)

  • Mark Rooij

    (Leiden University)

Abstract

The $$\delta $$ δ -machine is a statistical learning tool for classification based on dissimilarities or distances between profiles of the observations to profiles of a representation set, which was proposed by Yuan et al. (J Claasif 36(3): 442–470, 2019). So far, the $$\delta $$ δ -machine was restricted to continuous predictor variables only. In this article, we extend the $$\delta $$ δ -machine to handle continuous, ordinal, nominal, and binary predictor variables. We utilized a tailored dissimilarity function for mixed type variables which was defined by Gower. This measure has properties of a Manhattan distance. We develop, in a similar vein, a Euclidean dissimilarity function for mixed type variables. In simulation studies we compare the performance of the two dissimilarity functions and we compare the predictive performance of the $$\delta $$ δ -machine to logistic regression models. We generated data according to two population distributions where the type of predictor variables, the distribution of categorical variables, and the number of predictor variables was varied. The performance of the $$\delta $$ δ -machine using the two dissimilarity functions and different types of representation set was investigated. The simulation studies showed that the adjusted Euclidean dissimilarity function performed better than the adjusted Gower dissimilarity function; that the $$\delta $$ δ -machine outperformed logistic regression; and that for constructing the representation set, K-medoids clustering achieved fewer active exemplars than the one using K-means clustering while maintaining the accuracy. We also applied the $$\delta $$ δ -machine to an empirical example, discussed its interpretation in detail, and compared the classification performance with five other classification methods. The results showed that the $$\delta $$ δ -machine has a good balance between accuracy and interpretability.

Suggested Citation

  • Beibei Yuan & Willem Heiser & Mark Rooij, 2022. "A comparison of two dissimilarity functions for mixed-type predictor variables in the $$\delta $$ δ -machine," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 875-907, December.
  • Handle: RePEc:spr:advdac:v:16:y:2022:i:4:d:10.1007_s11634-021-00463-6
    DOI: 10.1007/s11634-021-00463-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-021-00463-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-021-00463-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    5. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    6. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    7. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    9. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    10. S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    11. Zhu Wang, 2022. "MM for penalized estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 54-75, March.
    12. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    13. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    14. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    15. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    16. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    17. Ahmed Ismaïl & Hartikainen Anna-Liisa & Järvelin Marjo-Riitta & Richardson Sylvia, 2011. "False Discovery Rate Estimation for Stability Selection: Application to Genome-Wide Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-20, November.
    18. Vitaly Meursault & Daniel Moulton & Larry Santucci & Nathan Schor, 2022. "One Threshold Doesn’t Fit All: Tailoring Machine Learning Predictions of Consumer Default for Lower-Income Areas," Working Papers 22-39, Federal Reserve Bank of Philadelphia.
    19. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    20. Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:16:y:2022:i:4:d:10.1007_s11634-021-00463-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.