IDEAS home Printed from https://ideas.repec.org/a/scn/cememm/v52y2016i1p95-111.html
   My bibliography  Save this article

Модель Прогноза Развития Товарных Рынков В Условиях Меняющихся Мер Государственной Политики

Author

Listed:
  • Бородин К.Г.

Abstract

В статье представлена экономико-математическая модель прогноза развития товарного рынка, позволяющая в сценарном режиме менять величину пошлины от импорта и инвестиций в производство, а в перспективе – добиваться оптимальных состояний для показателей спроса, предложения и цены внутреннего рынка. В модели учтены эффекты влияния пошлины от импорта и инвестиций на основные параметры товарного рынка. Отдельные практические возможности модели продемонстрированы на примере рынков мяса (рынки говядины, свинины и мяса птицы). Решены оптимизационные задачи по расчету величин импортной пошлины и инвестиций, необходимых для удвоения отечественного производства говядины; достижения максимального соотношения между объемами отечественного производства свинины и импорта; оценки величины инвестиций, позволяющей сохранить объемы производства на прежнем уровне при снижении импортной пошлины на мясо птицы до 20%.

Suggested Citation

  • Бородин К.Г., 2016. "Модель Прогноза Развития Товарных Рынков В Условиях Меняющихся Мер Государственной Политики," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 52(1), pages 95-111, январь.
  • Handle: RePEc:scn:cememm:v:52:y:2016:i:1:p:95-111
    Note: Москва
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Chung, Chanjin & Zhang, Tong & Peel, Derrell S., 2009. "Effects of Country of Origin Labeling in the U.S. Meat Industry with Imperfectly Competitive Processors," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 38(3), pages 1-12, December.
    2. Chung, Chanjin & Zhang, Tong & Peel, Derrell S., 2009. "Effects of Country of Origin Labeling in the U.S. Meat Industry with Imperfectly Competitive Processors," Agricultural and Resource Economics Review, Cambridge University Press, vol. 38(3), pages 406-417, December.
    3. Meinken, Kenneth W., 1955. "The Demand and Price Structure for Wheat," Technical Bulletins 157127, United States Department of Agriculture, Economic Research Service.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Shiptsova, Rimma & Thomsen, Michael R. & Goodwin, Harold L., Jr., 2002. "Producer Welfare Changes From Meat And Poultry Recalls," Journal of Food Distribution Research, Food Distribution Research Society, vol. 33(2), pages 1-9, July.
    6. Wang, Dong & Parton, Kevin A. & Deblitz, Claus, 2008. "Impact of potential dairy-beef production on China's beef supply, demand and international trade," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 16.
    7. Hupkova, Daniela & Bielik, Peter, 2009. "Estimating Demand Elasticities of Meat Demand in Slovakia," 113th Seminar, September 3-6, 2009, Chania, Crete, Greece 58030, European Association of Agricultural Economists.
    8. Antonova, Maria & Zeller, Manfred, 2007. "A Time-Series Analysis Of The Beef Supply Response In Russia: Implications For Agricultural Sector Development Policies," 104th Seminar, September 5-8, 2007, Budapest, Hungary 7791, European Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Бородин К.Г., 2018. "Оценка Влияния Продовольственного Эмбарго И Экономических Санкций На Товарные Рынки (На Примере Рынков Мяса)," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 54(4), pages 41-59, октябрь.
    2. Alicia L. Rihn & Chengyan Yue, 2016. "Visual Attention's Influence on Consumers’ Willingness‐to‐Pay for Processed Food Products," Agribusiness, John Wiley & Sons, Ltd., vol. 32(3), pages 314-328, July.
    3. Glynn T. Tonsor & Ted C. Schroeder & Jayson L. Lusk, 2013. "Consumer Valuation of Alternative Meat Origin Labels," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 676-692, September.
    4. Joseph, Siny & Lavoie, Nathalie & Caswell, Julie A., 2014. "Implementing COOL: Comparative welfare effects of different labeling schemes," Food Policy, Elsevier, vol. 44(C), pages 14-25.
    5. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    6. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    7. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    8. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    9. Ndayitwayeko, W-M. & Odhiambo, M.O. & Nyangweso, P.M. & Korir, M.K., 2012. "Determinants of Beef Meat Supply in Burundi: A Vector Error Correction Model Approach Applied to structural Nerlov Paradign," 2012 Eighth AFMA Congress, November 25-29, 2012, Nairobi, Kenya 159414, African Farm Management Association (AFMA).
    10. Simon P. Anderson & André de Palma, 2012. "Competition for attention in the Information (overload) Age," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 1-25, March.
    11. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Ma, Peng, 2021. "Optimal generic and brand advertising efforts in a decentralized supply chain considering customer surplus," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    13. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    14. Klingler, Anna-Lena & Luthander, Rasmus, 2018. "Market diffusion of residential PV and battery systems driven by self-consumption: A comparison of Sweden and Germany," Working Papers "Sustainability and Innovation" S18/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    15. Robertson, Alastair & Soopramanien, Didier & Fildes, Robert, 2007. "A segment-based analysis of Internet service adoption among UK households," Technology in Society, Elsevier, vol. 29(3), pages 339-350.
    16. Edgardo Arturo Ayala Gaytán, 2009. "Social network externalities and price dispersion in online markets," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 1-28, November.
    17. Liberali, Guilherme & Gruca, Thomas S. & Nique, Walter M., 2011. "The effects of sensitization and habituation in durable goods markets," European Journal of Operational Research, Elsevier, vol. 212(2), pages 398-410, July.
    18. Chul-Yong Lee & Jongsu Lee, 2009. "Demand Forecasting in the Early Stage of the Technology's Life Cycle Using Bayesian update," TEMEP Discussion Papers 200903, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Apr 2009.
    19. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    20. Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:cememm:v:52:y:2016:i:1:p:95-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergei Parinov (email available below). General contact details of provider: http://www.cemi.rssi.ru/emm/home.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.