IDEAS home Printed from https://ideas.repec.org/p/zbw/fisisi/s052021.html
   My bibliography  Save this paper

Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures

Author

Listed:
  • Van, Tien Linh Cao
  • Barthelmes, Lukas
  • Gnann, Till
  • Speth, Daniel
  • Kagerbauer, Martin

Abstract

Electric vehicles (EVs) can help to reduce greenhouse gas emissions of the transportation sector. Therefore, the German government has defined various measures and targets to promote the diffusion of EVs. However, factors influencing the market diffusion of EVs as well as interdependencies between policy measures and vehicle diffusion are often unclear and hence, diffusion simulations are probably inaccurate. At the same time, a precise simulation of EV diffusion is a relevant parameter in travel demand models building the base for transportation planning. This paper addresses the gaps in current market diffusion models for EVs with a particular focus on environmental effects as additional influencing factors of the market diffusion. Results will be drawn for the German car market with a market diffusion simulation until 2050. The market diffusion model ALADIN is applied and energy prices are extended by a CO2 price to improve the consideration of environmental factors in the market diffusion modelling. The effectiveness of environmental policy measures is assessed in scenarios with three different CO2 prices and their impact on the diffusion of EVs. The results show that the market diffusion is highly dependent on the evolution of external factors. A CO2 price of at least 150 €/t of CO2 by 2030 can have a significant impact on the market diffusion of EVs and may as well lead to changes in the drive mix for both, electric and conventional drives within the German passenger car fleet. The German government's target of seven to ten million EVs registered by 2030 seems in general achievable, if currently adopted purchase bonuses and expected cost degression for EVs also take effect. Until 2050, we find large effects with CO2 prices up to 500 €/t, yet limited growth in market share above that threshold.

Suggested Citation

  • Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
  • Handle: RePEc:zbw:fisisi:s052021
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/238276/1/176809585X.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    2. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation," Ecological Economics, Elsevier, vol. 107(C), pages 411-421.
    3. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data. Part I: Model structure and validation," Working Papers "Sustainability and Innovation" S4/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    3. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    4. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    5. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
    6. Romano Alberto Acri & Silvia Barone & Paolo Cambula & Valter Cecchini & Maria Carmen Falvo & Jacopo Lepore & Matteo Manganelli & Federico Santi, 2021. "Forecast of the Demand for Electric Mobility for Rome–Fiumicino International Airport," Energies, MDPI, vol. 14(17), pages 1-19, August.
    7. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    8. Bhat, Furqan A. & Verma, Ashish, 2024. "Electric two-wheeler adoption in India – A discrete choice analysis of motivators and barriers affecting the potential electric two-wheeler buyers," Transport Policy, Elsevier, vol. 152(C), pages 118-131.
    9. Plötz, Patrick & Jakobsson, Niklas & Sprei, Frances, 2017. "On the distribution of individual daily driving distances," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 213-227.
    10. Viri, Riku & Mäkinen, Johanna & Liimatainen, Heikki, 2021. "Modelling car fleet renewal in Finland: A model and development speed-based scenarios," Transport Policy, Elsevier, vol. 112(C), pages 63-79.
    11. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    12. Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2020. "Can product service systems support electric vehicle adoption?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 343-359.
    13. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    14. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    15. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    16. Xie, Fei & Lin, Zhenhong, 2017. "Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice," Energy Policy, Elsevier, vol. 108(C), pages 299-311.
    17. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    18. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    19. Gnann, Till & Speth, Daniel & Plötz, Patrick & Wietschel, Martin & Krail, Michael, 2022. "Markthochlaufszenarien für Elektrofahrzeuge: Rückblick und Ausblick bis 2030," Working Papers "Sustainability and Innovation" S05/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
    20. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fisisi:s052021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isfhgde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.