IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v21y2001i2a2752.html
   My bibliography  Save this article

Lévy processes and the Brazilian market

Author

Listed:
  • Barbachan, José Fajardo
  • Schuschny, Andrés Ricardo
  • Silva, André de Castro

Abstract

The present paper presents the Lévy processes used in the literature for the modeling of the returns of financial assets, which are generated by stable Paretian and hyperbolic distributions. Some properties of these distributions, especially the time-scale invariance, are analyzed. In the end, empirical evidence of the applicability of these processes is given for the modeling of Brazilian asset returns through Ibovespa, and the Telebrás and Petrobrás receipt. The data were collected between January 1st, 1995 and December 31st, 1998 (Gl) and January 1st, 1996 and December 31st, 1997 (G2).

Suggested Citation

  • Barbachan, José Fajardo & Schuschny, Andrés Ricardo & Silva, André de Castro, 2001. "Lévy processes and the Brazilian market," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(2), November.
  • Handle: RePEc:sbe:breart:v:21:y:2001:i:2:a:2752
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/2752
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    2. Pereira, Pedro L. Valls & Hotta, Luiz K. & Souza, Luiz Alvares R. de & Almeida, Nuno Miguel C. G. de, 1999. "Alternative Models To Extract Asset Volatility: A Comparative Study," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    3. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    4. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    5. Issler, João Victor, 1999. "Estimating and Forecasting the Volatility of Brazilian Finance Series Using ARCH Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    6. Mendes, Beatriz Vaz de Melo & Júnior, Antonio Marcos Duarte, 1999. "Robust Estimation for ARCH Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    7. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fajardo, José & Farias, Aquiles, 2004. "Generalized Hyperbolic Distributions and Brazilian Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
    2. Fajardo, J. & Cajueiro, D. O., 2003. "Volatility Estimation and Option Pricing with Fractional Brownian Motion," Finance Lab Working Papers flwp_53, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    3. Fajardo, José & Farias, Aquiles, 2009. "Multivariate affine generalized hyperbolic distributions: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 174-184, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fajardo, José & Farias, Aquiles, 2004. "Generalized Hyperbolic Distributions and Brazilian Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
    2. Fajardo, J. & Cajueiro, D. O., 2003. "Volatility Estimation and Option Pricing with Fractional Brownian Motion," Finance Lab Working Papers flwp_53, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    3. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    4. Marçal, Emerson F. & Valls Pereira, Pedro L., 2008. "Testando A Hipótese De Contágio A Partir De Modelos Multivariados De Volatilidade [Testing the contagion hypotheses using multivariate volatility models]," MPRA Paper 10356, University Library of Munich, Germany.
    5. Ortobelli, Sergio & Rachev, Svetlozar & Schwartz, Eduardo, 2000. "The Problem of Optimal Asset Allocation with Stable Distributed Returns," University of California at Los Angeles, Anderson Graduate School of Management qt3zd6q86c, Anderson Graduate School of Management, UCLA.
    6. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    7. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    8. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    9. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    10. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    12. Saswat Patra & Malay Bhattacharyya, 2021. "Does volume really matter? A risk management perspective using cross‐country evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 118-135, January.
    13. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    14. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    15. Beirlant, J. & Schoutens, W. & Segers, J.J.J., 2004. "Mandelbrot's Extremism," Discussion Paper 2004-125, Tilburg University, Center for Economic Research.
    16. Laura Eslava & Fernando Baltazar-Larios & Bor Reynoso, 2022. "Maximum Likelihood Estimation for a Markov-Modulated Jump-Diffusion Model," Papers 2211.17220, arXiv.org.
    17. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    18. Koundouri, Phoebe & Kourogenis, Nikolaos & Pittis, Nikitas & Samartzis, Panagiotis, 2015. "Factor Models as "Explanatory UniÖers" versus "Explanatory Ideals" of Empirical Regularities of Stock Returns," MPRA Paper 122254, University Library of Munich, Germany.
    19. Chamil W SENARATHNE & Wei JIANGUO, 2020. "Testing for Heteroskedastic Mixture of Ordinary Least Squares Errors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 73-91, July.
    20. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    21. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:21:y:2001:i:2:a:2752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.