IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v19y1999i1a2795.html
   My bibliography  Save this article

Robust Estimation for ARCH Models

Author

Listed:
  • Mendes, Beatriz Vaz de Melo
  • Júnior, Antonio Marcos Duarte

Abstract

This article introduces the class of the constrained M-estimators for ARCH models. The new estimators are defined based on the minimization of a bounded function of the squared residuals standardized by a robust scale. Their robustness and efficiency properties are derived. Using Monte Carlo experiments, it is shown that under small percentages of contaminations the robust estimates are still able to capture the dynamics of the process. The robust procedure is used to estimate the volatility of four Brazilian financial series.

Suggested Citation

  • Mendes, Beatriz Vaz de Melo & Júnior, Antonio Marcos Duarte, 1999. "Robust Estimation for ARCH Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
  • Handle: RePEc:sbe:breart:v:19:y:1999:i:1:a:2795
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/2795
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Badrinath, S G & Chatterjee, Sangit, 1988. "On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index," The Journal of Business, University of Chicago Press, vol. 61(4), pages 451-472, October.
    4. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    5. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
    6. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    7. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fajardo, José & Farias, Aquiles, 2004. "Generalized Hyperbolic Distributions and Brazilian Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
    2. Reyna, Fernando R. Q. & Júnior, Antonio M. Duarte & Mendes, Beatriz V. M. & Porto, Oscar, 2005. "Optimal Portfolio Structuring in Emerging Stock Markets Using Robust Statistics," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 25(2), November.
    3. Fajardo, J. & Cajueiro, D. O., 2003. "Volatility Estimation and Option Pricing with Fractional Brownian Motion," Finance Lab Working Papers flwp_53, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    4. Barbachan, José Fajardo & Schuschny, Andrés Ricardo & Silva, André de Castro, 2001. "Lévy processes and the Brazilian market," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(2), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    2. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    3. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    5. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    6. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    7. McMillan, David G. & Speight, Alan E. H., 2001. "Non-ferrous metals price volatility: a component analysis," Resources Policy, Elsevier, vol. 27(3), pages 199-207, September.
    8. Theodore E. Nijman & Roel Beetsma, 1991. "Empirical Tests of a Simple Pricing Model for Sugar Futures," Annals of Economics and Statistics, GENES, issue 24, pages 121-131.
    9. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    10. Gregory, Allan W, 1989. "A Nonparametric Test for Autoregressive Conditional Heteroscedasticity: A Markov-Chain Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 107-115, January.
    11. Shields, Kalvinder K, 1997. "Threshold Modelling of Stock Return Volatility on Eastern European Markets," Economic Change and Restructuring, Springer, vol. 30(2-3), pages 107-125.
    12. Sun, Yiguo & Stengos, Thanasis, 2006. "Semiparametric efficient adaptive estimation of asymmetric GARCH models," Journal of Econometrics, Elsevier, vol. 133(1), pages 373-386, July.
    13. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    14. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    15. Sabiruzzaman, Md. & Monimul Huq, Md. & Beg, Rabiul Alam & Anwar, Sajid, 2010. "Modeling and forecasting trading volume index: GARCH versus TGARCH approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 141-145, May.
    16. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    17. Jones, Charles M. & Lamont, Owen & Lumsdaine, Robin L., 1998. "Macroeconomic news and bond market volatility," Journal of Financial Economics, Elsevier, vol. 47(3), pages 315-337, March.
    18. Pereira, Pedro L. Valls & Hotta, Luiz K. & Souza, Luiz Alvares R. de & Almeida, Nuno Miguel C. G. de, 1999. "Alternative Models To Extract Asset Volatility: A Comparative Study," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    19. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    20. Andreas Brunhart, 2014. "Stock Market's Reactions to Revelation of Tax Evasion: An Empirical Assessment," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 161-190, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:19:y:1999:i:1:a:2795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.