IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v22y2016i3p621-628.html
   My bibliography  Save this article

Determinants of systematic risk in the US Restaurant industry

Author

Listed:
  • Sung Y. Park

    (Chung-Ang University, South Korea)

  • Sang Hyuck Kim

    (Gachon University, South Korea)

Abstract

To compare previous studies, this study re-examines the determinants of systematic risk in the restaurant industry. To estimate systematic risk, the authors specify flexible models that take care of serial dependence, autoregressive conditional heteroskedasticity and non-normality of the time series data. Using the estimated systematic risk, they analyse the determinants of risk using a quantile regression approach. The empirical results show that a firm’s liquidity ratio, efficiency ratio, debt leverage ratio and size are the main determinants of systematic risk in the restaurant industry. Moreover, it turns out that the effects of liquidity, debt leverage and efficiency decrease as the considered risk levels increase.

Suggested Citation

  • Sung Y. Park & Sang Hyuck Kim, 2016. "Determinants of systematic risk in the US Restaurant industry," Tourism Economics, , vol. 22(3), pages 621-628, June.
  • Handle: RePEc:sae:toueco:v:22:y:2016:i:3:p:621-628
    DOI: 10.5367/te.2014.0432
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5367/te.2014.0432
    Download Restriction: no

    File URL: https://libkey.io/10.5367/te.2014.0432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Woo Gon Kim & Bill Ryan & Silvio Ceschini, 2007. "Factors Affecting Systematic Risk in the US Restaurant Industry," Tourism Economics, , vol. 13(2), pages 197-208, June.
    2. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Kurt Brannas & Niklas Nordman, 2003. "Conditional skewness modelling for stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 10(11), pages 725-728.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    7. David Ashton & Mark Tippett, 2006. "Mean Reversion and the Distribution of United Kingdom Stock Index Returns," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 33(9-10), pages 1586-1609.
    8. Park, Sung Y. & Bera, Anil K., 2009. "Maximum entropy autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 150(2), pages 219-230, June.
    9. David Ashton & Mark Tippett, 2006. "Mean Reversion and the Distribution of United Kingdom Stock Index Returns," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 33(9‐10), pages 1586-1609, November.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Bowman, Robert G, 1979. "The Theoretical Relationship between Systematic Risk and Financial (Accounting) Variables," Journal of Finance, American Finance Association, vol. 34(3), pages 617-630, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madhusmita Bhadra & Doyeon Kim, 2023. "Income elasticity of demand and stock market beta," International Finance, Wiley Blackwell, vol. 26(2), pages 225-240, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    2. Stavros Stavroyiannis, 2016. "Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution," Papers 1602.05749, arXiv.org.
    3. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    4. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    5. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    7. Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.
    8. Wei Kuang, 2021. "Dynamic VaR forecasts using conditional Pearson type IV distribution," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 500-511, April.
    9. Chen, Yi-Ting, 2012. "A simple approach to standardized-residuals-based higher-moment tests," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 427-453.
    10. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    11. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
    12. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    13. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    14. Chang, Hao-Wen & Lin, Chinho, 2023. "Currency portfolio behavior in seven major Asian markets," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 540-559.
    15. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    16. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    17. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    18. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    19. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    20. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2016. "Which parametric model for conditional skewness?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1237-1271, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:22:y:2016:i:3:p:621-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.