IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v2y2004i2p211-250.html
   My bibliography  Save this article

Mixed Normal Conditional Heteroskedasticity

Author

Listed:
  • Markus Haas

Abstract

Both unconditional mixed normal distributions and GARCH models with fat-tailed conditional distributions have been employed in the literature for modeling financial data. We consider a mixed normal distribution coupled with a GARCH-type structure (termed MN-GARCH) which allows for conditional variance in each of the components as well as dynamic feedback between the components. Special cases and relationships with previously proposed specifications are discussed and stationarity conditions are derived. For the empirically most relevant GARCH(1,1) case, the conditions for existence of arbitrary integer moments are given and analytic expressions of the unconditional skewness, kurtosis, and autocorrelations of the squared process are derived. Finally, employing daily return data on the NASDAQ index, we provide a detailed empirical analysis and compare both the in-sample fit and out-of-sample forecasting performance of the MN-GARCH as well as recently proposed Markov-switching models. We show that the MN-GARCH approach can generate a plausible disaggregation of the conditional variance process in which the components' volatility dynamics have a clearly distinct behavior, which is, for example, compatible with the well-known leverage effect. Copyright 2004, Oxford University Press.

Suggested Citation

  • Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
  • Handle: RePEc:oup:jfinec:v:2:y:2004:i:2:p:211-250
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbh009
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Vedat Akgiray & G. Geoffrey Booth, 1987. "Compound Distribution Models Of Stock Returns: An Empirical Comparison," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 10(3), pages 269-280, September.
    3. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    4. Shleifer, Andrei & Summers, Lawrence H, 1990. "The Noise Trader Approach to Finance," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 19-33, Spring.
    5. Christian Francq & Michel Roussignol & Jean‐Michel Zakoian, 2001. "Conditional Heteroskedasticity Driven by Hidden Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 197-220, March.
    6. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Kim, Dongcheol & Kon, Stanley J, 1994. "Alternative Models for the Conditional Heteroscedasticity of Stock Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 563-598, October.
    12. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-235, April.
    13. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    14. Lux, Thomas, 1997. "Time variation of second moments from a noise trader/infection model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 1-38, November.
    15. Kai-Li Wang & Christopher Fawson & Christopher B. Barrett & James B. McDonald, 2001. "A flexible parametric GARCH model with an application to exchange rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 521-536.
    16. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2001. "A modified likelihood ratio test for homogeneity in finite mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 19-29.
    17. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
    18. Friend, Irwin & Westerfield, Randolph, 1980. "Co-Skewness and Capital Asset Pricing," Journal of Finance, American Finance Association, vol. 35(4), pages 897-913, September.
    19. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    20. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    21. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    22. Bowden, Roger J, 1972. "The Generalised Characteristic Equation of a Linear Dynamic System," Econometrica, Econometric Society, vol. 40(1), pages 201-203, January.
    23. Lin, Bing-Huei & Yeh, Shih-Kuo, 2000. "On the distribution and conditional heteroscedasticity in Taiwan stock prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 367-395, December.
    24. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    25. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    26. Kurt Brannas & Niklas Nordman, 2003. "Conditional skewness modelling for stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 10(11), pages 725-728.
    27. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    28. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
    29. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    30. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
    31. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    32. Neely, Christopher J., 1999. "Target zones and conditional volatility: The role of realignments," Journal of Empirical Finance, Elsevier, vol. 6(2), pages 177-192, April.
    33. Peiro, Amado, 1999. "Skewness in financial returns," Journal of Banking & Finance, Elsevier, vol. 23(6), pages 847-862, June.
    34. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    35. Kane, Alex, 1982. "Skewness Preference and Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(1), pages 15-25, March.
    36. Tucker, Alan L & Pond, Lallon, 1988. "The Probability Distribution of Foreign Exchange Price Changes: Tests of Candidate Processes," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 638-647, November.
    37. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    38. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    4. Rombouts Jeroen V. K. & Bouaddi Mohammed, 2009. "Mixed Exponential Power Asymmetric Conditional Heteroskedasticity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-32, May.
    5. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    6. Lai, Jing-yi, 2012. "Shock-dependent conditional skewness in international aggregate stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 72-83.
    7. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
    8. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Advances in Econometrics, in: Missing Data Methods: Time-Series Methods and Applications, pages 1-86, Emerald Group Publishing Limited.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Amendola, Alessandra & Christian, Francq, 2009. "Concepts and tools for nonlinear time series modelling," MPRA Paper 15140, University Library of Munich, Germany.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    16. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    17. Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.
    18. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    19. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    20. Hueng, C. James & McDonald, James B., 2005. "Forecasting asymmetries in aggregate stock market returns: Evidence from conditional skewness," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 666-685, December.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:2:y:2004:i:2:p:211-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.