IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v236y2022i1p148-159.html
   My bibliography  Save this article

A combined approach of convolutional neural networks and machine learning for visual fault classification in photovoltaic modules

Author

Listed:
  • Sridharan Naveen Venkatesh
  • Vaithiyanathan Sugumaran

Abstract

Fault diagnosis plays a significant role in enhancing the useful lifetime, power output, and reliability of photovoltaic modules (PVM). Visual faults such as burn marks, delamination, discoloration, glass breakage, and snail trails make detection of faults difficult under harsh environmental conditions. Various researchers have made several attempts to identify visual faults in a PVM. However, much of the previous studies were centered on the identification and analysis of limited number of faults. This article presents the use of a deep convolutional neural network (CNN) to extract image features and perform an effective classification of faults by machine learning (ML) algorithms. In contrast to the present-day work, five different fault conditions were considered in the study. The proposed solution consists of three phases, to effectively analyze various PVM defects. First, the module images are acquired using unmanned aerial vehicles (UAVs) and data augmentation is performed to generate a uniform dataset. Afterward, a pre-trained deep CNN is adopted for image feature extraction. Finally, the extracted image features are classified with the help of various ML classifiers. The final results show the effectiveness of pre-trained deep CNN and accurate performance of ML classifiers. The best-in-class ML classifier for multiple fault classification is suggested based on the performance comparison.

Suggested Citation

  • Sridharan Naveen Venkatesh & Vaithiyanathan Sugumaran, 2022. "A combined approach of convolutional neural networks and machine learning for visual fault classification in photovoltaic modules," Journal of Risk and Reliability, , vol. 236(1), pages 148-159, February.
  • Handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:148-159
    DOI: 10.1177/1748006X211020305
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211020305
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211020305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsanakas, John A. & Ha, Long D. & Al Shakarchi, F., 2017. "Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery," Renewable Energy, Elsevier, vol. 102(PA), pages 224-233.
    2. Miao He & David He & Jae Yoon & Thomas J Nostrand & Junda Zhu & Eric Bechhoefer, 2019. "Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach," Journal of Risk and Reliability, , vol. 233(3), pages 303-316, June.
    3. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    4. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    5. Carballo, Jose A. & Bonilla, Javier & Berenguel, Manuel & Fernández-Reche, Jesús & García, Ginés, 2019. "New approach for solar tracking systems based on computer vision, low cost hardware and deep learning," Renewable Energy, Elsevier, vol. 133(C), pages 1158-1166.
    6. Chandel, S.S. & Nagaraju Naik, M. & Sharma, Vikrant & Chandel, Rahul, 2015. "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, Elsevier, vol. 78(C), pages 193-202.
    7. Bouraiou, Ahmed & Hamouda, Messaoud & Chaker, Abdelkader & Lachtar, Salah & Neçaibia, Ammar & Boutasseta, Nadir & Mostefaoui, Mohammed, 2017. "Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 132(C), pages 22-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meena, Roopmati & Pareek, Arti & Gupta, Rajesh, 2024. "A comprehensive Review on interfacial delamination in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Ganesan, K. & Winston, D. Prince & Nesamalar, J. Jeslin Drusila & Pravin, M., 2024. "Output power enhancement of a bifacial solar photovoltaic with upside down installation during module defects," Applied Energy, Elsevier, vol. 353(PA).
    3. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    4. Silva, Aline M. & Melo, Fernando C. & Reis, Joaquim H. & Freitas, Luiz C.G., 2019. "The study and application of evaluation methods for photovoltaic modules under real operational conditions, in a region of the Brazilian Southeast," Renewable Energy, Elsevier, vol. 138(C), pages 1189-1204.
    5. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    6. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    7. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Naveen Venkatesh Sridharan & Jerome Vasanth Joseph & Sugumaran Vaithiyanathan & Mohammadreza Aghaei, 2023. "Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules," Energies, MDPI, vol. 16(15), pages 1-17, August.
    9. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    10. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    12. Krzysztof Barbusiński & Paweł Kwaśnicki & Anna Gronba-Chyła & Agnieszka Generowicz & Józef Ciuła & Bartosz Szeląg & Francesco Fatone & Agnieszka Makara & Zygmunt Kowalski, 2024. "Influence of Environmental Conditions on the Electrical Parameters of Side Connectors in Glass–Glass Photovoltaic Modules," Energies, MDPI, vol. 17(3), pages 1-13, January.
    13. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    14. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    15. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    16. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    17. Han, Changwoon & Lee, Hyeonseok, 2018. "Investigation and modeling of long-term mismatch loss of photovoltaic array," Renewable Energy, Elsevier, vol. 121(C), pages 521-527.
    18. Carlos Toledo & Lucía Serrano-Lujan & Jose Abad & Antonio Lampitelli & Antonio Urbina, 2019. "Measurement of Thermal and Electrical Parameters in Photovoltaic Systems for Predictive and Cross-Correlated Monitorization," Energies, MDPI, vol. 12(4), pages 1-20, February.
    19. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    20. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:148-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.