IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i1p159-167.html
   My bibliography  Save this article

Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence

Author

Listed:
  • Zhang, Nan
  • Fouladirad, Mitra
  • Barros, Anne
  • Zhang, Jun

Abstract

This paper deals with condition-based maintenance policy of a K-out-of-N deteriorating system with failure dependence. The intrinsic degradation of each component is modelled with a pure jump Lévy process. The idea of the failure dependence is motivated by complex engineering systems where the failure of one component may cause a momentary, transient shock to the system. The effect of the shock is modelled by a random magnitude of increment in the degradation level of each surviving component. Perfect periodic inspections are carried out on the system. Upon inspection, highly deteriorated or failed components are perfectly replaced and hence are restored to an as-good-as-new state. Nothing is done to the rest of the components. For such a system, the evaluation of the reliability and the assessment of the maintenance planning are quite complex due to the failure dependence as well as the imperfect maintenance at the system level. In this study, we address these problems by the implementation of Markov renewal theory. The maintenances costs in both the short-run and long-run horizons are derived and we validate these theoretical calculations by Monte-carlo simulations. Numerical example is given to illustrate the applicability of the proposed model. It can provide a reference for the decision-making when developing maintenance policies.

Suggested Citation

  • Zhang, Nan & Fouladirad, Mitra & Barros, Anne & Zhang, Jun, 2020. "Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 159-167.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:159-167
    DOI: 10.1016/j.ejor.2020.04.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720303945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.04.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    2. Sanling Song & David W. Coit & Qianmei Feng, 2016. "Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 720-735, August.
    3. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    4. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2018. "Optimal imperfect maintenance cost analysis of a two-component system with failure interactions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 24-34.
    5. Li, Heping & Deloux, Estelle & Dieulle, Laurence, 2016. "A condition-based maintenance policy for multi-component systems with Lévy copulas dependence," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 44-55.
    6. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    7. Zhao, Xufeng & Mizutani, Satoshi & Nakagawa, Toshio, 2015. "Which is better for replacement policies with continuous or discrete scheduled times?," European Journal of Operational Research, Elsevier, vol. 242(2), pages 477-486.
    8. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    9. Nguyen, Dinh Tuan & Dijoux, Yann & Fouladirad, Mitra, 2017. "Analytical properties of an imperfect repair model and application in preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 256(2), pages 439-453.
    10. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    11. Hao Peng & Qianmei Feng & David Coit, 2010. "Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 12-22.
    12. Sophie Mercier & Hai Ha Pham, 2014. "A condition‐based imperfect replacement policy for a periodically inspected system with two dependent wear indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(6), pages 766-782, November.
    13. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    14. Hui Xiao & Rui Peng & Gregory Levitin, 2016. "Optimal replacement and allocation of multi‐state elements in k‐within‐m‐from‐r/n sliding window systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(2), pages 184-198, March.
    15. Rasmekomen, Nipat & Parlikad, Ajith Kumar, 2016. "Condition-based maintenance of multi-component systems with degradation state-rate interactions," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 1-10.
    16. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne, 2016. "Remaining useful lifetime estimation and noisy gamma deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 76-87.
    17. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Liu, Yongchao & Wang, Guanjun & Liu, Peng, 2024. "A condition-based maintenance policy with non-periodic inspection for k-out-of-n: G systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Zhao, Fei & Peng, Rui & Zhang, Nan, 2023. "Inspection policy optimization for a k-out-of-n/Cl(k′,n′;F) system considering failure dependence: a case study," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Zhang, Nan & Cai, Kaiquan & Deng, Yingjun & Zhang, Jun, 2024. "Joint optimization of condition-based maintenance and condition-based production of a single equipment considering random yield and maintenance delay," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Arismendi, Renny & Barros, Anne & Grall, Antoine, 2021. "Piecewise deterministic Markov process for condition-based maintenance models — Application to critical infrastructures with discrete-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Xia, Tangbin & Cao, Lei & Xu, Yuhui & Zhang, Kaigan & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2024. "Multi-level maintenance and inventory joint optimization for a k-out-of-n hyper-system considering the selection of suppliers with incentive discount policies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Wang, Yifei & He, Rui & Tian, Zhigang, 2023. "Opportunistic condition-based maintenance optimization for electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Golmohammadi, Elnaz & Ardakan, Mostafa Abouei, 2022. "Reliability optimization problem with the mixed strategy, degrading components, and a periodic inspection and maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Truong-Ba, Huy & Cholette, Michael E. & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2021. "Condition-based inspection policies for boiler heat exchangers," European Journal of Operational Research, Elsevier, vol. 291(1), pages 232-243.
    13. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    14. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Saberzadeh, Zahra & Razmkhah, Mostafa, 2022. "Reliability of degrading complex systems with two dependent components per element," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    5. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    6. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    7. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    9. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    10. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    11. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    12. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Roy Assaf & Phuc Do & Samia Nefti-Meziani & Philip Scarf, 2018. "Wear rate–state interactions within a multi-component system: a study of a gearbox-accelerated life testing platform," Journal of Risk and Reliability, , vol. 232(4), pages 425-434, August.
    16. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    17. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    18. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Safaei, Fatemeh & Châtelet, Eric & Ahmadi, Jafar, 2020. "Optimal age replacement policy for parallel and series systems with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:159-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.