IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v229y2015i4p279-290.html
   My bibliography  Save this article

Lifecycle Prognostics: Transitioning between information types

Author

Listed:
  • Michael Sharp
  • Jamie Coble
  • Alan Nam
  • J Wes Hines
  • Belle Upadhyaya

Abstract

As nuclear power plants seek to extend their licenses and maintain a high level of performance and safety, online monitoring and assessment of system degradation are becoming a crucial consideration. A goal of the DOE Light Water Reactor Sustainability program is the accurate estimation of the remaining useful life of nuclear power plant systems, structures, and components. Effective prognostic systems should seamlessly predict the remaining useful life from beginning of component life to end of component life, so-called Lifecycle Prognostics. When a component is first put into operation, the only information available may be past failure times of similar components or the expected distribution of failure times derived from reliability analyses of these data (Type I Prognostics). These data provide an estimated life for the average component operating under average usage conditions. As the component operates, it begins to consume its available life at a rate largely influenced by the system and environmental stresses. Information from these recorded stresses can be used to update the expected failure time distribution (Type II Prognostics). The incorporation of stressor information allows for the estimation of the remaining useful life for an average component operating under specific usage conditions. After continued operations, measurable levels of degradation may evolve, which allows for further improvement of the failure time distribution estimate by incorporating these health indicators (Type III Prognostics). This article presents a framework for using Bayesian methods to transition between prognostic model types and to update failure time distribution estimates as new information becomes available.

Suggested Citation

  • Michael Sharp & Jamie Coble & Alan Nam & J Wes Hines & Belle Upadhyaya, 2015. "Lifecycle Prognostics: Transitioning between information types," Journal of Risk and Reliability, , vol. 229(4), pages 279-290, August.
  • Handle: RePEc:sae:risrel:v:229:y:2015:i:4:p:279-290
    DOI: 10.1177/1748006X14557110
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X14557110
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X14557110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    2. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    3. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    4. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Chien-Chang Hsu & Min-Sheng Chen, 2016. "Intelligent maintenance prediction system for LED wafer testing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 335-342, April.
    6. Ali Rohan, 2022. "Holistic Fault Detection and Diagnosis System in Imbalanced, Scarce, Multi-Domain (ISMD) Data Setting for Component-Level Prognostics and Health Management (PHM)," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    7. Li, Zhixiong & Wu, Dazhong & Hu, Chao & Terpenny, Janis, 2019. "An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 110-122.
    8. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    9. Younghoon Lee, 2022. "Identifying Competitive Attributes Based on an Ensemble of Explainable Artificial Intelligence," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(4), pages 407-419, August.
    10. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    11. Bérenger Ossété Gombé & Gwenhael Goavec Mérou & Karla Breschi & Hervé Guyennet & Jean-Michel Friedt & Violeta Felea & Kamal Medjaher, 2019. "A SAW wireless sensor network platform for industrial predictive maintenance," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1617-1628, April.
    12. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Kim, Taejin & Lee, Gueseok & Youn, Byeng D., 2019. "PHM experimental design for effective state separation using Jensen–Shannon divergence," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    14. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    15. Luping Chen & Liangjun Xu & Yilin Zhou, 2018. "Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy," Energies, MDPI, vol. 11(4), pages 1-15, April.
    16. Sara Antomarioni & Marjorie Maria Bellinello & Maurizio Bevilacqua & Filippo Emanuele Ciarapica & Renan Favarão da Silva & Gilberto Francisco Martha de Souza, 2020. "A Data-Driven Approach to Extend Failure Analysis: A Framework Development and a Case Study on a Hydroelectric Power Plant," Energies, MDPI, vol. 13(23), pages 1-16, December.
    17. Xiaoxia Liang & Fang Duan & Ian Bennett & David Mba, 2020. "A Comprehensive Health Indicator Integrated by the Dynamic Risk Profile from Condition Monitoring Data and the Function of Financial Losses," Energies, MDPI, vol. 14(1), pages 1-25, December.
    18. Liang, Tao & Wang, Fuli & Wang, Shu & Li, Kang & Mo, Xuelei & Lu, Di, 2024. "Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    19. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    20. Baptista, Marcia & Henriques, Elsa M.P. & de Medeiros, Ivo P. & Malere, Joao P. & Nascimento, Cairo L. & Prendinger, Helmut, 2019. "Remaining useful life estimation in aeronautics: Combining data-driven and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 228-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:229:y:2015:i:4:p:279-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.