IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v228y2014i6p543-557.html
   My bibliography  Save this article

An improved ensemble empirical mode decomposition method and its application to pressure pulsation analysis of hydroelectric generator unit

Author

Listed:
  • Xiaoming Xue
  • Jianzhong Zhou
  • Yongchuan Zhang
  • Weibo Zhang
  • Wenlong Zhu

Abstract

The noise-assisted method of ensemble empirical mode decomposition represents a significant improvement over the original empirical mode decomposition for eliminating the mode mixing problem. However, the ensemble empirical mode decomposition method will generate some additional problems, including the contamination of the residue noise in the signal reconstruction and the high computational cost. In this work, an improved ensemble empirical mode decomposition method, combining the complementary ensemble empirical mode decomposition and a time-saving ensemble empirical mode decomposition method by over-sampling the investigated signal, is proposed to solve these problems. By using the proposed method, the residue of the added white noise in the signal reconstruction can be eliminated completely by adding white noises in pairs with positive and negative signs to the targeted signal, and the computational cost can be saved drastically by processing the original signal with the cubic spline interpolation technique. Two simulation signals have been used to demonstrate the effectiveness of the proposed method in this article. The analysis results indicate that this method has good performance in eliminating the residue noise and reducing the costing time, which also provides more accurate decomposition results than the original ensemble empirical mode decomposition. Finally, the application to the feature extraction of pressure pulsation signal of hydroelectric generator unit shows that the proposed method has strong practicability.

Suggested Citation

  • Xiaoming Xue & Jianzhong Zhou & Yongchuan Zhang & Weibo Zhang & Wenlong Zhu, 2014. "An improved ensemble empirical mode decomposition method and its application to pressure pulsation analysis of hydroelectric generator unit," Journal of Risk and Reliability, , vol. 228(6), pages 543-557, December.
  • Handle: RePEc:sae:risrel:v:228:y:2014:i:6:p:543-557
    DOI: 10.1177/1748006X14538246
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X14538246
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X14538246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. An, Xueli & Jiang, Dongxiang & Li, Shaohua & Zhao, Minghao, 2011. "Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine," Energy, Elsevier, vol. 36(9), pages 5508-5520.
    2. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Jin & Wang, Jian & Wu, Xuezhou & Wang, Shuo, 2019. "An improved polynomial-based nonlinear variable importance measure and its application to degradation assessment for high-voltage transformer under imbalance data," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 175-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    2. Garshasbi, Mohammad Sadeq, 2016. "Fault localization based on combines active and passive measurements in computer networks by ant colony optimization," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 205-212.
    3. Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
    4. Benjamin-Fink, Nicole & Reilly, Brian K., 2017. "A road map for developing and applying object-oriented bayesian networks to “WICKED” problems," Ecological Modelling, Elsevier, vol. 360(C), pages 27-44.
    5. Chunwang Xiaogeng LiRen & Xiaojun Ma & Fuxiang Chen & Zhicheng Yang & Sandeep Panchal, 2022. "Simulation and inspection of fault arc in building energy-saving distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 331-339, March.
    6. Lu, Shibao & Zhang, Xiaoling & Shang, Yizi & Li, Wei & Skitmore, Martin & Jiang, Shuli & Xue, Yangang, 2018. "Improving Hilbert–Huang transform for energy-correlation fluctuation in hydraulic engineering," Energy, Elsevier, vol. 164(C), pages 1341-1350.
    7. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    8. Yulai Zhao & Junzhe Lin & Xiaowei Wang & Qingkai Han & Yang Liu, 2023. "A Novel Data-Driven Feature Extraction Strategy and Its Application in Looseness Detection of Rotor-Bearing System," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    9. Chen, Liwei & Gao, Yansan & Dui, Hongyan & Xing, Liudong, 2021. "Importance measure-based maintenance optimization strategy for pod slewing system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    11. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    12. Fam, Mei Ling & He, Xuhong & Konovessis, Dimitrios & Ong, Lin Seng, 2020. "Using Dynamic Bayesian Belief Network for analysing well decommissioning failures and long-term monitoring of decommissioned wells," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Wu, Shengnan & Zhang, Laibin & Barros, Anne & Zheng, Wenpei & Liu, Yiliu, 2018. "Performance analysis for subsea blind shear ram preventers subject to testing strategies," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 281-298.
    14. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    15. Zhang, Rongpeng & Hong, Tianzhen, 2017. "Modeling of HVAC operational faults in building performance simulation," Applied Energy, Elsevier, vol. 202(C), pages 178-188.
    16. Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.
    17. Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.
    18. Yu Zang & Wei Shangguan & Baigen Cai & Huashen Wang & Michael G Pecht, 2019. "Methods for fault diagnosis of high-speed railways: A review," Journal of Risk and Reliability, , vol. 233(5), pages 908-922, October.
    19. Ali Behravan & Bahareh Kiamanesh & Roman Obermaisser, 2021. "Fault Diagnosis of DCV and Heating Systems Based on Causal Relation in Fuzzy Bayesian Belief Networks Using Relation Direction Probabilities," Energies, MDPI, vol. 14(20), pages 1-47, October.
    20. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:228:y:2014:i:6:p:543-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.