IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002253.html
   My bibliography  Save this article

Fault analysis of dragline subsystem using Bayesian network model

Author

Listed:
  • Sahu, Atma Ram
  • Palei, Sanjay Kumar

Abstract

Unidentified and undetected faults in heavy earthmoving machinery (HEMM) are linked with high failure frequency and downtime across the industries. Draglines are capital-intensive HEMM deployed in large surface coal mines for stripping overburden, and drag system failures contribute to substantial downtimes; thus impacting its availability, reliability and productivity. Application of an effective fault detection and analysis method can reduce its failure frequency as well as downtime. Therefore, the present paper demonstrates a data-driven approach for fault analysis of drag system using inference-based Bayesian network (BN) through generated sensor data, and logbook records of 28 months. The test dataset is used for building a 16-node three-layer BN. Historical fault records, experts’ opinion, and characteristics of faults helped defining the threshold limits for fault type identification. Thereafter identified faults, based on their dependency of occurrence on cause(s)-symptom(s) in the causal model, are categorized as catastrophic fault, degraded fault, or intermittent fault. Finally, the fault analysis results are validated through three-axiom based sensitivity analysis, and their prediction accuracy revealed the capability of the model for successful identification of faults. The parameters sensitive to faults are expected to act as a guiding tool for condition-based maintenance of dragline to improve its reliability and availability.

Suggested Citation

  • Sahu, Atma Ram & Palei, Sanjay Kumar, 2022. "Fault analysis of dragline subsystem using Bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002253
    DOI: 10.1016/j.ress.2022.108579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang Karl, 2011. "TVICA - time varying independent component analysis and its application to financial data," SFB 649 Discussion Papers 2011-054, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Sumin Han & Yongsheng He & Shuqing Zheng & Fuzhong Wang, 2019. "Intelligent Fault Inference of Inverters Based on a Three-Layer Bayesian Network," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, June.
    3. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    4. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Wang, Chuan & Liu, Yupeng & Wang, Dongbo & Wang, Guorong & Wang, Dingya & Yu, Chao, 2021. "Reliability evaluation method based on dynamic fault diagnosis results: A case study of a seabed mud lifting system," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    9. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    10. Quintanar-Gago, David A. & Nelson, Pamela F. & Díaz-Sánchez, à ngeles & Boldrick, Michael S., 2021. "Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    12. Soleimani, Morteza & Campean, Felician & Neagu, Daniel, 2021. "Integration of Hidden Markov Modelling and Bayesian Network for fault detection and prediction of complex engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Melani, Arthur Henrique de Andrade & Michalski, Miguel Angelo de Carvalho & da Silva, Renan Favarão & de Souza, Gilberto Francisco Martha, 2021. "A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    15. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Fang, Xiaoyu & Qu, Jianfeng & Chai, Yi, 2023. "Self-supervised intermittent fault detection for analog circuits guided by prior knowledge," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jinjin & Wang, Rongxi & Liang, Zeming & Liu, Pengpeng & Gao, Jianmin & Wang, Zhen, 2023. "Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    3. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    4. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    6. Marco Aurélio de Oliveira & Antonio Schalata Pacheco & André Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Carlos Alberto Flesch, 2023. "Self‐organizing maps and Bayesian networks in organizational modelling: A case study in innovation projects management," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(1), pages 61-87, January.
    7. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    8. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Chemweno, Peter & Pintelon, Liliane & Van Horenbeek, Adriaan & Muchiri, Peter, 2015. "Development of a risk assessment selection methodology for asset maintenance decision making: An analytic network process (ANP) approach," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 663-676.
    11. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    13. El Hassene Ait Mokhtar & Radouane Laggoune & Alaa Chateauneuf, 2017. "Benefit and customer demand approach for maintenance optimization of complex systems using Bayesian networks," Journal of Risk and Reliability, , vol. 231(5), pages 558-572, October.
    14. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    16. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    17. Lei Jiang & Yiliu Liu & Xiaomin Wang & Mary Ann Lundteigen, 2019. "Operation-oriented reliability and availability evaluation for onboard high-speed train control system with dynamic Bayesian network," Journal of Risk and Reliability, , vol. 233(3), pages 455-469, June.
    18. El Hassene Ait Mokhtar & Radouane Laggoune & Alaa Chateauneuf, 2016. "Utility-Based Maintenance Optimization for Complex Water-Distribution Systems Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4153-4170, September.
    19. Fan, Lin & Su, Huai & Wang, Wei & Zio, Enrico & Zhang, Li & Yang, Zhaoming & Peng, Shiliang & Yu, Weichao & Zuo, Lili & Zhang, Jinjun, 2022. "A systematic method for the optimization of gas supply reliability in natural gas pipeline network based on Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Yu Han & Jianxing Yu & Chuan Wang & Xiaobo Xie & Chao Yu & Yupeng Liu, 2023. "A fault diagnosis method for the HIPPS of FPSO unit based on dynamic Bayesian network," Journal of Risk and Reliability, , vol. 237(4), pages 752-764, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.