IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v223y2009i2p145-157.html
   My bibliography  Save this article

Interruption modelling in electrical power distribution systems using the Weibull—Markov model

Author

Listed:
  • R Medjoudj
  • D Aissani
  • A Boubakeur
  • K D Haim

Abstract

This paper develops an application of the Markov and Weibull—Markov methods to evaluate the effects of maintenance actions on the availability and reliability of electrical distribution systems. It unifies existing models and critically reviews them on their applicability to electrical components. Both methods are applied to investigate the expected performances of underground and overhead circuits. It compares expected performance in terms of failure rates, outage times, and availability. Based an a threshold reliability value and maximum benefit, specific preventive maintenance actions are defined for reliability improvement for each component and therefore for the system. The results obtained by the Weibull—Markov method would seem to be more realistic. A range of recommendations is formulated for practical considerations which may be of interest to operators, as well as to managers of these systems.

Suggested Citation

  • R Medjoudj & D Aissani & A Boubakeur & K D Haim, 2009. "Interruption modelling in electrical power distribution systems using the Weibull—Markov model," Journal of Risk and Reliability, , vol. 223(2), pages 145-157, June.
  • Handle: RePEc:sae:risrel:v:223:y:2009:i:2:p:145-157
    DOI: 10.1243/1748006XJRR215
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR215
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hoang Pham, 2006. "System Software Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-295-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Fang & Lijun Sun, 2019. "Developing A Semi-Markov Process Model for Bridge Deterioration Prediction in Shanghai," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    2. Shivaie, Mojtaba & Ameli, Mohammad T. & Sepasian, Mohammad S. & Weinsier, Philip D. & Vahidinasab, Vahid, 2015. "A multistage framework for reliability-based distribution expansion planning considering distributed generations by a self-adaptive global-based harmony search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 68-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liviu Adrian COTFAS & Andreea DIOSTEANU, 2010. "Software Reliability in Semantic Web Service Composition Applications," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(4), pages 48-56.
    2. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    3. Subhashis Chatterjee & Shobhit Nigam & Jeetendra Bahadur Singh & Lakshmi Narayan Upadhyaya, 2012. "Effect of change point and imperfect debugging in software reliability and its optimal release policy," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(5), pages 539-551, March.
    4. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    5. Subhashis Chatterjee & Jeetendra B. Singh & Arunava Roy, 2015. "A structure-based software reliability allocation using fuzzy analytic hierarchy process," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 513-525, February.
    6. Gaurav Mishra & P. K. Kapur & Anu G. Aggarwal, 2023. "A generalized multi-upgradation SRGM considering uncertainty of random field operating environments," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 328-336, March.
    7. Bistouni, Fathollah & Jahanshahi, Mohsen, 2017. "Remove and contraction: A novel method for calculating the reliability of Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 362-375.
    8. Vikas Dhaka & Nidhi Nijhawan, 2024. "Effect of change in environment on reliability growth modeling integrating fault reduction factor and change point: a general approach," Annals of Operations Research, Springer, vol. 340(1), pages 181-215, September.
    9. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
    10. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    11. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    12. Hoang Pham, 2020. "Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions," Mathematics, MDPI, vol. 8(9), pages 1-12, September.
    13. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    14. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    15. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    16. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    17. S. Chatterjee & S. Nigam & J. B. Singh & L. N. Upadhyaya, 2011. "Application of fuzzy time series in prediction of time between failures & faults in software reliability assessment," Fuzzy Information and Engineering, Springer, vol. 3(3), pages 293-309, September.
    18. Triet Pham & Hoang Pham, 2019. "A generalized software reliability model with stochastic fault-detection rate," Annals of Operations Research, Springer, vol. 277(1), pages 83-93, June.
    19. Dahye Lee & Inhong Chang & Hoang Pham, 2023. "Study of a New Software Reliability Growth Model under Uncertain Operating Environments and Dependent Failures," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    20. Yuka Minamino & Yusuke Makita & Shinji Inoue & Shigeru Yamada, 2022. "Efficiency Evaluation of Software Faults Correction Based on Queuing Simulation," Mathematics, MDPI, vol. 10(9), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:223:y:2009:i:2:p:145-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.