IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v49y2024i3p368-402.html
   My bibliography  Save this article

Extending an Identified Four-Parameter IRT Model: The Confirmatory Set-4PNO Model

Author

Listed:
  • Justin L. Kern

    (University of Illinois at Urbana-Champaign)

Abstract

Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the dyad four-parameter normal ogive (Dyad-4PNO) model was developed. This model allows for slipping and guessing effects by including binary augmented variables—each indicated by two items whose probabilities are determined by slipping and guessing parameters—which are subsequently related to a continuous latent trait through a two-parameter model. Furthermore, the Dyad-4PNO assumes uncertainty as to which items are paired on each augmented variable. In this way, the model is inherently exploratory. In the current article, the new model, called the Set-4PNO model, is an extension of the Dyad-4PNO in two ways. First, the new model allows for more than two items per augmented variable. Second, these item sets are assumed to be fixed, that is, the model is confirmatory. This article discusses this extension and introduces a Gibbs sampling algorithm to estimate the model. A Monte Carlo simulation study shows the efficacy of the algorithm at estimating the model parameters. A real data example shows that this extension may be viable in practice, with the data fitting a more general Set-4PNO model (i.e., more than two items per augmented variable) better than the Dyad-4PNO, 2PNO, 3PNO, and 4PNO models.

Suggested Citation

  • Justin L. Kern, 2024. "Extending an Identified Four-Parameter IRT Model: The Confirmatory Set-4PNO Model," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 368-402, June.
  • Handle: RePEc:sae:jedbes:v:49:y:2024:i:3:p:368-402
    DOI: 10.3102/10769986231181587
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986231181587
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986231181587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Justin L. Kern & Steven Andrew Culpepper, 2020. "A Restricted Four-Parameter IRT Model: The Dyad Four-Parameter Normal Ogive (Dyad-4PNO) Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 575-599, September.
    2. Steven Andrew Culpepper, 2016. "Revisiting the 4-Parameter Item Response Model: Bayesian Estimation and Application," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1142-1163, December.
    3. Jimmy Torre & Jeffrey Douglas, 2004. "Higher-order latent trait models for cognitive diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 333-353, September.
    4. Christian A. Gregory, 2020. "Are We Underestimating Food Insecurity? Partial Identification with a Bayesian 4-Parameter IRT Model," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 632-655, October.
    5. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    6. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    7. Edgar C. Merkle & Daniel Furr & Sophia Rabe-Hesketh, 2019. "Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 802-829, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin L. Kern & Steven Andrew Culpepper, 2020. "A Restricted Four-Parameter IRT Model: The Dyad Four-Parameter Normal Ogive (Dyad-4PNO) Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 575-599, September.
    2. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    3. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    4. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    5. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    6. Steven Andrew Culpepper, 2019. "An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 921-940, December.
    7. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    8. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    9. Yuqi Gu, 2023. "Generic Identifiability of the DINA Model and Blessing of Latent Dependence," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 117-131, March.
    10. Xiangyi Liao & Daniel M. Bolt, 2021. "Item Characteristic Curve Asymmetry: A Better Way to Accommodate Slips and Guesses Than a Four-Parameter Model?," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 753-775, December.
    11. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    12. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    13. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen, 2023. "Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 613-635, June.
    14. Ting Wang & Benjamin Graves & Yves Rosseel & Edgar C. Merkle, 2022. "Computation and application of generalized linear mixed model derivatives using lme4," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1173-1193, September.
    15. Yinghan Chen & Shiyu Wang, 2023. "Bayesian Estimation of Attribute Hierarchy for Cognitive Diagnosis Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 810-841, December.
    16. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 24-54, March.
    17. Matthew S. Johnson & Sandip Sinharay, 2020. "The Reliability of the Posterior Probability of Skill Attainment in Diagnostic Classification Models," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 5-31, February.
    18. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    19. Hans-Friedrich Köhn & Chia-Yi Chiu, 2018. "How to Build a Complete Q-Matrix for a Cognitively Diagnostic Test," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 273-299, July.
    20. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:49:y:2024:i:3:p:368-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.