IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v48y2023i4p454-489.html
   My bibliography  Save this article

Handling Missing Data in Cross-Classified Multilevel Analyses: An Evaluation of Different Multiple Imputation Approaches

Author

Listed:
  • Simon Grund

    (IPN - Leibniz Institute for Science and Mathematics Education Centre for International Student Assessment University of Hamburg)

  • Oliver Lüdtke
  • Alexander Robitzsch

    (IPN - Leibniz Institute for Science and Mathematics Education Centre for International Student Assessment)

Abstract

Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified data, in which observations are clustered in multiple higher-level units simultaneously (e.g., schools and neighborhoods, transitions from primary to secondary schools). In this article, we consider several approaches to MI for cross-classified data (CC-MI), including a novel fully conditional specification approach, a joint modeling approach, and other approaches that are based on single- and two-level MI. In this context, we clarify the conditions that CC-MI methods need to fulfill to provide a suitable treatment of missing data, and we compare the approaches both from a theoretical perspective and in a simulation study. Finally, we illustrate the use of CC-MI in real data and discuss the implications of our findings for research practice.

Suggested Citation

  • Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2023. "Handling Missing Data in Cross-Classified Multilevel Analyses: An Evaluation of Different Multiple Imputation Approaches," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 454-489, August.
  • Handle: RePEc:sae:jedbes:v:48:y:2023:i:4:p:454-489
    DOI: 10.3102/10769986231151224
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986231151224
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986231151224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Patrick Royston, 2005. "Multiple imputation of missing values: update," Stata Journal, StataCorp LP, vol. 5(2), pages 188-201, June.
    3. Jörg Drechsler, 2015. "Multiple Imputation of Multilevel Missing Data—Rigor Versus Simplicity," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 69-95, February.
    4. Jian Zhu & Trivellore E. Raghunathan, 2015. "Convergence Properties of a Sequential Regression Multiple Imputation Algorithm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1112-1124, September.
    5. Jingchen Liu & Andrew Gelman & Jennifer Hill & Yu-Sung Su & Jonathan Kropko, 2014. "On the stationary distribution of iterative imputations," Biometrika, Biometrika Trust, vol. 101(1), pages 155-173.
    6. Patrick Royston, 2005. "Multiple imputation of missing values: Update of ice," Stata Journal, StataCorp LP, vol. 5(4), pages 527-536, December.
    7. Patrick Royston, 2005. "MICE for multiple imputation of missing values," United Kingdom Stata Users' Group Meetings 2005 02, Stata Users Group.
    8. Dunn, E.C. & Milliren, C.E. & Evans, C.R. & Subramanian, S.V. & Richmond, T.K., 2015. "Disentangling the relative influence of schools and neighborhoods on adolescents' risk for depressive symptoms," American Journal of Public Health, American Public Health Association, vol. 105(4), pages 732-740.
    9. Harvey Goldstein & James R. Carpenter & William J. Browne, 2014. "Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(2), pages 553-564, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2018. "Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 316-353, June.
    2. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    3. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    4. Speidel, Matthias & Drechsler, Jörg & Jolani, Shahab, 2018. "R package hmi: a convenient tool for hierarchical multiple imputation and beyond," IAB-Discussion Paper 201816, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    5. Oya Kalaycioglu & Andrew Copas & Michael King & Rumana Z. Omar, 2016. "A comparison of multiple-imputation methods for handling missing data in repeated measurements observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 683-706, June.
    6. Lee, Chioun & Ryff, Carol D., 2016. "Early parenthood as a link between childhood disadvantage and adult heart problems: A gender-based approach," Social Science & Medicine, Elsevier, vol. 171(C), pages 58-66.
    7. Denney, Justin T. & Brewer, Mackenzie & Kimbro, Rachel Tolbert, 2020. "Food insecurity in households with young children: A test of contextual congruence," Social Science & Medicine, Elsevier, vol. 263(C).
    8. Watkins, Adam M. & Melde, Chris, 2018. "Gangs, gender, and involvement in crime, victimization, and exposure to violence," Journal of Criminal Justice, Elsevier, vol. 57(C), pages 11-25.
    9. Jason R. D. Rarick & Carly Tubbs Dolan & Wen‐Jui Han & Jun Wen, 2018. "Relations Between Socioeconomic Status, Subjective Social Status, and Health in Shanghai, China," Social Science Quarterly, Southwestern Social Science Association, vol. 99(1), pages 390-405, March.
    10. David W Lawson & Arijeta Makoli & Anna Goodman, 2013. "Sibling Configuration Predicts Individual and Descendant Socioeconomic Success in a Modern Post-Industrial Society," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-9, September.
    11. Brewer, Mackenzie & Kimbro, Rachel Tolbert, 2014. "Neighborhood context and immigrant children's physical activity," Social Science & Medicine, Elsevier, vol. 116(C), pages 1-9.
    12. Lee, RaeHyuck & Brooks-Gunn, Jeanne & Han, Wen-Jui & Waldfogel, Jane & Zhai, Fuhua, 2014. "Is participation in Head Start associated with less maternal spanking for boys and girls?," Children and Youth Services Review, Elsevier, vol. 46(C), pages 55-63.
    13. Lombardi, Caitlin McPherran, 2021. "Family income and mothers’ parenting quality: Within-family associations from infancy to late childhood," Children and Youth Services Review, Elsevier, vol. 120(C).
    14. Minda Tan & Shuiyun Liu, 2023. "A Way of Human Capital Accumulation: Heterogeneous Impact of Shadow Education on Students’ Academic Performance in China," SAGE Open, , vol. 13(4), pages 21582440231, November.
    15. Emma Zang & Anthony R. Bardo, 2019. "Objective and Subjective Socioeconomic Status, Their Discrepancy, and Health: Evidence from East Asia," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(2), pages 765-794, June.
    16. Álvaro Choi & María Gil & Mauro Mediavilla & Javier Valbuena, 2016. "Double toil and trouble: grade retention and academic performance," Working Papers 2016/7, Institut d'Economia de Barcelona (IEB).
    17. Shaun R. Seaman & Ian R. White & Andrew J. Copas & Leah Li, 2012. "Combining Multiple Imputation and Inverse-Probability Weighting," Biometrics, The International Biometric Society, vol. 68(1), pages 129-137, March.
    18. Schwartz, Joseph A. & Beaver, Kevin M., 2014. "A biosocial analysis of the sources of missing data in criminological research," Journal of Criminal Justice, Elsevier, vol. 42(6), pages 452-461.
    19. Richard Grieve & John Cairns & Simon G. Thompson, 2010. "Improving costing methods in multicentre economic evaluation: the use of multiple imputation for unit costs," Health Economics, John Wiley & Sons, Ltd., vol. 19(8), pages 939-954, August.
    20. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:48:y:2023:i:4:p:454-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.