Robust estimation and classification for functional data via projection-based depth notions
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-007-0053-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
- repec:cte:wsrepe:ws120906 is not listed on IDEAS
- Ghiglietti, Andrea & Paganoni, Anna Maria, 2017. "Exact tests for the means of Gaussian stochastic processes," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 102-107.
- González-Rodríguez, Gil & Colubi, Ana, 2017. "On the consistency of bootstrap methods in separable Hilbert spaces," Econometrics and Statistics, Elsevier, vol. 1(C), pages 118-127.
- repec:cte:wsrepe:ws140101 is not listed on IDEAS
- Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
- Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
- Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
- Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
- Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
- Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
- Marco Grasso & Bianca Maria Colosimo & Fugee Tsung, 2017. "A phase I multi-modelling approach for profile monitoring of signal data," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4354-4377, August.
- Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
- Frédéric Ferraty & Nadia Kudraszow & Philippe Vieu, 2012. "Nonparametric estimation of a surrogate density function in infinite-dimensional spaces," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 447-464.
- Fabrizio Maturo & Francesca Fortuna & Tonio Di Battista, 2024. "Outliers detection in assessment tests’ quality evaluation through the blended use of functional data analysis and item response theory," Annals of Operations Research, Springer, vol. 342(3), pages 1547-1562, November.
- Javier Martínez Torres & Jorge Pastor Pérez & Joaquín Sancho Val & Aonghus McNabola & Miguel Martínez Comesaña & John Gallagher, 2020. "A Functional Data Analysis Approach for the Detection of Air Pollution Episodes and Outliers: A Case Study in Dublin, Ireland," Mathematics, MDPI, vol. 8(2), pages 1-19, February.
- Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
- ARATA Yoshiyuki, 2017. "A Functional Linear Regression Model in the Space of Probability Density Functions," Discussion papers 17015, Research Institute of Economy, Trade and Industry (RIETI).
- Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2010. "Measures of influence for the functional linear model with scalar response," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 327-339, February.
- Wang, Xiao & van ’t Veld, Klaas & Marcy, Peter & Huzurbazar, Snehalata & Alvarado, Vladimir, 2018. "Economic co-optimization of oil recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 222(C), pages 132-147.
- González-Rodríguez, Gil & Colubi, Ana & Gil, María Ángeles, 2012. "Fuzzy data treated as functional data: A one-way ANOVA test approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 943-955.
- Miguel Martínez Comesaña & Sandra Martínez Mariño & Pablo Eguía Oller & Enrique Granada Álvarez & Aitor Erkoreka González, 2020. "A Functional Data Analysis for Assessing the Impact of a Retrofitting in the Energy Performance of a Building," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
More about this item
Keywords
Depth measures; Functional data; Projections method; Supervised classification; Primary 62G07; Secondary 62G20;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:22:y:2007:i:3:p:481-496. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.