IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v55y2018i1d10.1007_s12597-017-0312-y.html
   My bibliography  Save this article

$$\chi$$ χ -Optimal solution of single objective nonlinear optimization problem with uncertain parameters

Author

Listed:
  • Mrinal Jana

    (University of Petroleum and Energy Studies)

  • Geetanjali Panda

    (Indian Institute of Technology Kharagpur)

Abstract

This paper addresses nonlinear optimization problem whose parameters are uncertain and lie in closed intervals. A partial ordering is introduced to define closeness between two intervals as well as two interval vectors. Existence of the solution of the model is studied using this partial ordering in case of unconstrained as well as constrained optimization problem. A variant of goal programming technique is used to develop a methodology to derive the solution. The methodology is illustrated through a numerical example. A possible application in finance is provided.

Suggested Citation

  • Mrinal Jana & Geetanjali Panda, 2018. "$$\chi$$ χ -Optimal solution of single objective nonlinear optimization problem with uncertain parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 165-186, March.
  • Handle: RePEc:spr:opsear:v:55:y:2018:i:1:d:10.1007_s12597-017-0312-y
    DOI: 10.1007/s12597-017-0312-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-017-0312-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-017-0312-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    2. Gabriel R. Bitran, 1980. "Linear Multiple Objective Problems with Interval Coefficients," Management Science, INFORMS, vol. 26(7), pages 694-706, July.
    3. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    4. Liu, Shiang-Tai, 2008. "Posynomial geometric programming with interval exponents and coefficients," European Journal of Operational Research, Elsevier, vol. 186(1), pages 17-27, April.
    5. Chanas, Stefan & Kuchta, Dorota, 1996. "Multiobjective programming in optimization of interval objective functions -- A generalized approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 594-598, November.
    6. A. Bhurjee & G. Panda, 2012. "Efficient solution of interval optimization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(3), pages 273-288, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    2. P. Kumar & G. Panda, 2017. "Solving nonlinear interval optimization problem using stochastic programming technique," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 752-765, December.
    3. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    4. Abhijit Baidya & Uttam Kumar Bera & Manoranjan Maiti, 2016. "The grey linear programming approach and its application to multi-objective multi-stage solid transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 500-522, September.
    5. Debdas Ghosh, 2016. "A Newton method for capturing efficient solutions of interval optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 648-665, September.
    6. Lifeng Li, 2023. "Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 247-265, June.
    7. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    8. T. Antczak, 2018. "Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 205-224, January.
    9. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    10. Xiaobin Yang & Haitao Lin & Gang Xiao & Huanbin Xue & Xiaopeng Yang, 2019. "Resolution of Max-Product Fuzzy Relation Equation with Interval-Valued Parameter," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    11. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    12. Fang-Xuan Hong & Deng-Feng Li, 2017. "Nonlinear programming method for interval-valued n-person cooperative games," Operational Research, Springer, vol. 17(2), pages 479-497, July.
    13. Tong Xin & Guolai Yang & Liqun Wang & Quanzhao Sun, 2020. "Numerical Calculation and Uncertain Optimization of Energy Conversion in Interior Ballistics Stage," Energies, MDPI, vol. 13(21), pages 1-21, November.
    14. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    15. Wang, Song, 2024. "Pricing European call options with interval-valued volatility and interest rate," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    16. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    17. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    18. A. Bhurjee & G. Panda, 2012. "Efficient solution of interval optimization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(3), pages 273-288, December.
    19. Sevastjanov, P.V. & Róg, P., 2003. "Fuzzy modeling of manufacturing and logistic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(6), pages 569-585.
    20. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:55:y:2018:i:1:d:10.1007_s12597-017-0312-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.