IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v324y2018icp202-217.html
   My bibliography  Save this article

Stable strategies analysis based on the utility of Z-number in the evolutionary games

Author

Listed:
  • Kang, Bingyi
  • Chhipi-Shrestha, Gyan
  • Deng, Yong
  • Hewage, Kasun
  • Sadiq, Rehan

Abstract

Evolutionary games with the fuzzy set are attracting growing interest. While among previous studies, the role of the reliability of knowledge in such an infrastructure is still virgin and may become a fascinating issue. Z-number is combined with “restriction” and “reliability”, which is an efficient framework to simulate the thinking of human. In this paper, the stable strategies analysis based on the utility of Z-number in the evolutionary games is proposed, which can simulate the procedure of human’s competition and cooperation more authentically and more flexibly. Some numerical examples and an application are used to illustrate the effectiveness of the proposed methodology. Results show that total utility of Z-number can be used as an index to extend the classical evolutionary games into ones linguistic-based, which is applicable in the real applications since the payoff matrix is always determined by the knowledge of human using uncertain information, e.g., (outcome of the next year, about fifty thousand dollars, likely).

Suggested Citation

  • Kang, Bingyi & Chhipi-Shrestha, Gyan & Deng, Yong & Hewage, Kasun & Sadiq, Rehan, 2018. "Stable strategies analysis based on the utility of Z-number in the evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 202-217.
  • Handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:202-217
    DOI: 10.1016/j.amc.2017.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammerstein, Peter & Leimar, Olof, 2015. "Evolutionary Game Theory in Biology," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
    3. Samira Keivanpour & Daoud Ait-Kadi & Christian Mascle, 2017. "Automobile manufacturers’ strategic choice in applying green practices: joint application of evolutionary game theory and fuzzy rule-based approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1312-1335, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    2. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    3. Deng, Xinyang & Jiang, Wen & Wang, Zhen, 2020. "An Information Source Selection Model Based on Evolutionary Game Theory," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    4. Yuan, Hairui & Meng, Xinzhu, 2022. "Replicator dynamics of the Hawk-Dove game with different stochastic noises in infinite populations," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Sun, Qingqing & Chen, Hong & Long, Ruyin & Yang, Jiahui, 2023. "Who will pay for the “bicycle cemetery”? Evolutionary game analysis of recycling abandoned shared bicycles under dynamic reward and punishment," European Journal of Operational Research, Elsevier, vol. 305(2), pages 917-929.
    6. Wen Jiang & Zeyu Ma & Xinyang Deng, 2019. "An attack-defense game based reliability analysis approach for wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    7. Deng, Yunsheng & Zhang, Jihui, 2021. "Memory-based prisoner's dilemma game with history optimal strategy learning promotes cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    8. Deng, Wei & Deng, Yong, 2018. "Entropic methodology for entanglement measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 693-697.
    9. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    10. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    11. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    12. Bowen Qin & Fuyuan Xiao, 2019. "An improved method to determine basic probability assignment with interval number and its application in classification," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    2. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    4. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    5. Andrey Privalov & Vera Lukicheva & Igor Kotenko & Igor Saenko, 2020. "Increasing the Sensitivity of the Method of Early Detection of Cyber-Attacks in Telecommunication Networks Based on Traffic Analysis by Extreme Filtering," Energies, MDPI, vol. 13(11), pages 1-18, June.
    6. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    7. Fernando Reche & María Morales & Antonio Salmerón, 2020. "Statistical Parameters Based on Fuzzy Measures," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    8. Gia Sirbiladze & Tariel Khvedelidze, 2023. "Associated Statistical Parameters’ Aggregations in Interactive MADM," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    9. Tianxiang Zhan & Fuyuan Xiao, 2021. "A Fast Evidential Approach for Stock Forecasting," Papers 2104.05204, arXiv.org, revised Jul 2021.
    10. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    11. Dingyi Gan & Bin Yang & Yongchuan Tang, 2020. "An Extended Base Belief Function in Dempster–Shafer Evidence Theory and Its Application in Conflict Data Fusion," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    12. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    13. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    14. Fahimeh Aliakbari Nouri & Mohsen Shafiei Nikabadi & Laya Olfat, 2019. "The Role of Supply Chain Features in the Effectiveness of Sustainability Practices in the Service Supply Chain: Application of Fuzzy Rule-Based System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 867-899, May.
    15. Zhang, X. & Chen, M.Y. & Wang, M.G. & Ge, Y.E. & Stanley, H.E., 2019. "A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 499-516.
    16. Simona Hašková & Petr Šuleř & Róbert Kuchár, 2023. "A Fuzzy Multi-Criteria Evaluation System for Share Price Prediction: A Tesla Case Study," Mathematics, MDPI, vol. 11(13), pages 1-17, July.
    17. Fatin Amrina A. Rashid & Hawa Hishamuddin & Nizaroyani Saibani & Mohd Radzi Abu Mansor & Zambri Harun, 2022. "A Review of Supply Chain Uncertainty Management in the End-of-Life Vehicle Industry," Sustainability, MDPI, vol. 14(19), pages 1-28, October.
    18. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2021. "Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data," Energies, MDPI, vol. 14(3), pages 1-18, February.
    20. Huang, Zhiming & Yang, Lin & Jiang, Wen, 2019. "Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 417-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:202-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.