IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i12p1550147718818755.html
   My bibliography  Save this article

A pixel-level entropy-weighted image fusion algorithm based on bidimensional ensemble empirical mode decomposition

Author

Listed:
  • Pei Wang
  • Hui Fu
  • Ke Zhang

Abstract

The bidimensional empirical mode decomposition algorithm is more suitable to handle image fusion than the traditional multi-scale decomposition methods in the image fusion area. Nevertheless, there are several inherent problems of empirical mode decomposition, such as the mode mixing problem or end effects problem. As an improved empirical mode decomposition method, the ensemble empirical mode decomposition improves the empirical mode decomposition, by averaging the modes of all noise-added signals, in order to improve the mode mixing problem. In this article, an adaptive image fusion algorithm based on the representation of bidimensional ensemble empirical mode decomposition is proposed. This novel algorithm decomposes the source image by the bidimensional ensemble empirical mode decomposition algorithm, and a pixel-level weighting fusion method is then presented based on the entropy of intrinsic mode function; the fusion image can thus be obtained by inversing bidimensional ensemble empirical mode decomposition on the composite representation. Based on the quantitative comparison results, the proposed algorithm provides fusion performance to the Laplacian pyramid and wavelet transform methods. In addition, the proposed algorithm has adaptive capabilities and does not need any predetermined filters or wavelet functions.

Suggested Citation

  • Pei Wang & Hui Fu & Ke Zhang, 2018. "A pixel-level entropy-weighted image fusion algorithm based on bidimensional ensemble empirical mode decomposition," International Journal of Distributed Sensor Networks, , vol. 14(12), pages 15501477188, December.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:12:p:1550147718818755
    DOI: 10.1177/1550147718818755
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718818755
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718818755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Daming & Gao, Fei & Breaz, Elena & Ravey, Alexandre & Miraoui, Abdellatif, 2017. "Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach," Energy, Elsevier, vol. 138(C), pages 1175-1186.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    2. Xuexia Zhang & Zixuan Yu & Weirong Chen, 2019. "Life Prediction Based on D-S ELM for PEMFC," Energies, MDPI, vol. 12(19), pages 1-15, September.
    3. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    4. Yang, Yang & Yu, Xiaoran & Zhu, Wenchao & Xie, Changjun & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Huang, Liang & Zhang, Ruiming, 2023. "Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification," Renewable Energy, Elsevier, vol. 219(P2).
    5. Yu, Yang & Yu, Qinghua & Luo, RunSen & Chen, Sheng & Yang, Jiebo & Yan, Fuwu, 2024. "Degradation and polarization curve prediction of proton exchange membrane fuel cells: An interpretable model perspective," Applied Energy, Elsevier, vol. 365(C).
    6. Pan, Rui & Yang, Duo & Wang, Yujie & Chen, Zonghai, 2020. "Health degradation assessment of proton exchange membrane fuel cell based on an analytical equivalent circuit model," Energy, Elsevier, vol. 207(C).
    7. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    8. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    9. Zhang, Zhendong & He, Hongwen & Wang, Yaxiong & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions," Applied Energy, Elsevier, vol. 357(C).
    10. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    11. Lei Zhao & Haifeng Dai & Fenglai Pei & Pingwen Ming & Xuezhe Wei & Jiangdong Zhou, 2022. "A Comparative Study of Equivalent Circuit Models for Electro-Chemical Impedance Spectroscopy Analysis of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(1), pages 1-16, January.
    12. Jingjing Hu & Zhaoming Yang & Huai Su, 2023. "Dynamic Prediction of Natural Gas Calorific Value Based on Deep Learning," Energies, MDPI, vol. 16(2), pages 1-20, January.
    13. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    15. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Huang, Ruike & Peng, Yiqiang & Yang, Jibin & Xu, Xiaohui & Deng, Pengyi, 2022. "Correlation analysis and prediction of PEM fuel cell voltage during start-stop operation based on real-world driving data," Energy, Elsevier, vol. 260(C).
    17. Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
    18. Cha, Dowon & Jeon, Seung Won & Yang, Wonseok & Kim, Dongwoo & Kim, Yongchan, 2018. "Comparative performance evaluation of self-humidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions," Energy, Elsevier, vol. 150(C), pages 320-328.
    19. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:12:p:1550147718818755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.