IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs096014812401810x.html
   My bibliography  Save this article

Short-term hybrid prognostics of fuel cells: A comparative and improvement study

Author

Listed:
  • Sheng, Chuang
  • Fu, Jun
  • Qin, HongChuan
  • Zu, YanMin
  • Liang, YeZhe
  • Deng, ZhongHua
  • Wang, Zhuo
  • Li, Xi

Abstract

Accurately predicting the performance degradation trend of fuel cells helps take measures in advance and prolong the stack's service life, leading to a novel hybrid forecasting approach. The first grey model prediction method based on residual exponential smoothing optimization (ES-R-GM) can capture the voltage deterioration trend. We explore the integration of two different ES techniques, specifically the double ES (ES2) and cubic ES (ES3), to investigate their effect on enhancing the predictive accuracy of the GM model. The second method of the adaptive network fuzzy inference system (ANFIS) can characterize local nonlinear behavior. We utilize the simulated annealing (SA) algorithm to optimize ANFIS results under different fuzzy rule selection strategies. The outcomes of the two prediction methods mentioned above are combined to create a hybrid prediction using the data fusion method and the moving window technique. Various hybrid methods are evaluated under general conditions and further detailed optimization. The data collected from the experimental platform confirms the suggested hybrid framework. The results show that the hybrid ES3-R-GM + ANFIS-SC method outperformed the single models in final prediction accuracy and can effectively track both global trends and local changes. Simultaneously, it takes less time to calculate than the literature. Moreover, when applied to consistent public datasets, the hybrid approach maintains its robustness and accuracy compared with other hybrid prognostic methods.

Suggested Citation

  • Sheng, Chuang & Fu, Jun & Qin, HongChuan & Zu, YanMin & Liang, YeZhe & Deng, ZhongHua & Wang, Zhuo & Li, Xi, 2024. "Short-term hybrid prognostics of fuel cells: A comparative and improvement study," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s096014812401810x
    DOI: 10.1016/j.renene.2024.121742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401810X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    2. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    3. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    4. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    5. Gallo, Marco & Polverino, Pierpaolo & Mougin, Julie & Morel, Bertrand & Pianese, Cesare, 2020. "Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction," Applied Energy, Elsevier, vol. 279(C).
    6. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    7. Zhou, Daming & Gao, Fei & Breaz, Elena & Ravey, Alexandre & Miraoui, Abdellatif, 2017. "Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach," Energy, Elsevier, vol. 138(C), pages 1175-1186.
    8. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2021. "Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network," Renewable Energy, Elsevier, vol. 179(C), pages 802-814.
    9. Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    3. Chuang Sheng & Yi Zheng & Rui Tian & Qian Xiang & Zhonghua Deng & Xiaowei Fu & Xi Li, 2023. "A Comparative Study of the Kalman Filter and the LSTM Network for the Remaining Useful Life Prediction of SOFC," Energies, MDPI, vol. 16(9), pages 1-16, April.
    4. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    5. Deng, Zhihua & Wang, Haijiang & Liu, Hao & Chen, Qihong & Zhang, Jiashun, 2024. "Degradation prediction of proton exchange membrane fuel cell using a novel neuron-fuzzy model based on light spectrum optimizer," Renewable Energy, Elsevier, vol. 234(C).
    6. Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
    7. Chen, Dongfang & Wu, Wenlong & Chang, Kuanyu & Li, Yuehua & Pei, Pucheng & Xu, Xiaoming, 2023. "Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization," Energy, Elsevier, vol. 285(C).
    8. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    9. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    10. Yuanwu Xu & Hao Shu & Hongchuan Qin & Xiaolong Wu & Jingxuan Peng & Chang Jiang & Zhiping Xia & Yongan Wang & Xi Li, 2022. "Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter," Energies, MDPI, vol. 15(7), pages 1-17, March.
    11. Yu, Yang & Yu, Qinghua & Luo, RunSen & Chen, Sheng & Yang, Jiebo & Yan, Fuwu, 2024. "Degradation and polarization curve prediction of proton exchange membrane fuel cells: An interpretable model perspective," Applied Energy, Elsevier, vol. 365(C).
    12. Tian, Lei & Gao, Yan & Yang, Haiyu & Wang, Renkang, 2025. "Multi-scenario long-term degradation prediction of PEMFC based on generative inference informer model," Applied Energy, Elsevier, vol. 377(PA).
    13. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    14. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    15. Zhang, Zhendong & He, Hongwen & Wang, Yaxiong & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions," Applied Energy, Elsevier, vol. 357(C).
    16. Wang, Fu-Kwun & Kebede, Getnet Awoke & Lo, Shih-Che & Woldegiorgis, Bereket Haile, 2024. "An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction," Energy, Elsevier, vol. 308(C).
    17. Zhao, Lei & Hong, Jichao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Ming, Pingwen & Dai, Haifeng, 2023. "Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 262(PA).
    18. Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
    19. Lv, Jianfeng & Shen, Xiaoning & Gao, Yabin & Liu, Jianxing & Sun, Guanghui, 2024. "The seasonal-trend disentangle based prognostic framework for PEM fuel cells," Renewable Energy, Elsevier, vol. 228(C).
    20. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s096014812401810x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.