IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i5p1394-1401.html
   My bibliography  Save this article

An open-source program for spatial decomposition of bus transit networks

Author

Listed:
  • Nicholas S Caros
  • Anson F Stewart
  • John Attanucci

Abstract

Comparing transit operations and performance over time is often challenging due to changes in route identifiers and service patterns. It is particularly difficult if the analysis period spans a major network design change where bus routes are realigned and renamed. This paper presents a new open-source software package that simplifies longitudinal transit performance analysis by decomposing a bus network into block-length segments that remain stable over time. The package then matches transit networks across time periods using segment geometry rather than potentially unstable route or stop identifiers. This package provides an efficient method for transit planners, advocacy groups, policy makers and urban scientists to analyze changes in transit performance over time without any prior knowledge of network design changes.

Suggested Citation

  • Nicholas S Caros & Anson F Stewart & John Attanucci, 2023. "An open-source program for spatial decomposition of bus transit networks," Environment and Planning B, , vol. 50(5), pages 1394-1401, June.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:5:p:1394-1401
    DOI: 10.1177/23998083231174892
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083231174892
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083231174892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Ahmed El-Geneidy & David Levinson, 2007. "Mapping Accessibility Over Time," Working Papers 200709, University of Minnesota: Nexus Research Group.
    3. Kim, Hyun & Lee, Keumsook & Park, Jong Soo & Song, Yena, 2018. "Transit network expansion and accessibility implications: A case study of Gwangju metropolitan area, South Korea," Research in Transportation Economics, Elsevier, vol. 69(C), pages 544-553.
    4. Song, Yena & Kim, Hyun & Lee, Keumsook & Ahn, Kwangwon, 2018. "Subway network expansion and transit equity: A case study of Gwangju metropolitan area, South Korea," Transport Policy, Elsevier, vol. 72(C), pages 148-158.
    5. Handley, John C. & Fu, Lina & Tupper, Laura L., 2019. "A case study in spatial-temporal accessibility for a transit system," Journal of Transport Geography, Elsevier, vol. 75(C), pages 25-36.
    6. Wu, Belinda M. & Hine, Julian P., 2003. "A PTAL approach to measuring changes in bus service accessibility," Transport Policy, Elsevier, vol. 10(4), pages 307-320, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Chenxi Li & Xing Gao & Bao-Jie He & Jingyao Wu & Kening Wu, 2019. "Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    3. Pyrialakou, V. Dimitra & Gkritza, Konstantina & Fricker, Jon D., 2016. "Accessibility, mobility, and realized travel behavior: Assessing transport disadvantage from a policy perspective," Journal of Transport Geography, Elsevier, vol. 51(C), pages 252-269.
    4. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    5. Ahn, Kwangwon & Jang, Hanwool & Song, Yena, 2020. "Economic impacts of being close to subway networks: A case study of Korean metropolitan areas," Research in Transportation Economics, Elsevier, vol. 83(C).
    6. Foth, Nicole & Manaugh, Kevin & El-Geneidy, Ahmed M., 2013. "Towards equitable transit: examining transit accessibility and social need in Toronto, Canada, 1996–2006," Journal of Transport Geography, Elsevier, vol. 29(C), pages 1-10.
    7. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    8. Singer, Matan E. & Cohen-Zada, Aviv L. & Martens, Karel, 2022. "Core versus periphery: Examining the spatial patterns of insufficient accessibility in U.S. metropolitan areas," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Rafal Stachyra & Kamil Roman, 2021. "Analysis of Accessibility of Public Transport in Warsaw in the Opinion of Users," Postmodern Openings, Editura Lumen, Department of Economics, vol. 12(3), pages 384-403, August.
    10. Bocarejo S., Juan Pablo & Oviedo H., Daniel Ricardo, 2012. "Transport accessibility and social inequities: a tool for identification of mobility needs and evaluation of transport investments," Journal of Transport Geography, Elsevier, vol. 24(C), pages 142-154.
    11. Weckström, Christoffer & Mladenović, Miloš N. & Kujala, Rainer & Saramäki, Jari, 2021. "Navigability assessment of large-scale redesigns in nine public transport networks: Open timetable data approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 212-229.
    12. Jago Dodson & Neil Sipe, 2007. "Oil Vulnerability in the Australian City: Assessing Socioeconomic Risks from Higher Urban Fuel Prices," Urban Studies, Urban Studies Journal Limited, vol. 44(1), pages 37-62, January.
    13. Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    14. Chandra, Shailesh & Naik, R. Thirumaleswara & Venkatesh, Manoj & Mudgal, Abhisek, 2021. "Accessibility evaluations of the proposed road user charge (RUC) program in California," Transport Policy, Elsevier, vol. 113(C), pages 12-26.
    15. Ahuja, Richa & Tiwari, Geetam, 2021. "Evolving term “accessibility” in spatial systems: Contextual evaluation of indicators," Transport Policy, Elsevier, vol. 113(C), pages 4-11.
    16. Bantis, Thanos & Haworth, James, 2020. "Assessing transport related social exclusion using a capabilities approach to accessibility framework: A dynamic Bayesian network approach," Journal of Transport Geography, Elsevier, vol. 84(C).
    17. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    18. Apantri Peungnumsai & Hiroyuki Miyazaki & Apichon Witayangkurn & Sohee Minsun Kim, 2020. "A Grid-Based Spatial Analysis for Detecting Supply–Demand Gaps of Public Transports: A Case Study of the Bangkok Metropolitan Region," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    19. Li, Tiebei & Dodson, Jago & Sipe, Neil, 2015. "Differentiating metropolitan transport disadvantage by mode: Household expenditure on private vehicle fuel and public transport fares in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 49(C), pages 16-25.
    20. Viguié, Vincent & Liotta, Charlotte & Pfeiffer, Basile & Coulombel, Nicolas, 2023. "Can public transport improve accessibility for the poor over the long term? Empirical evidence in Paris, 1968–2010," Journal of Transport Geography, Elsevier, vol. 106(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:5:p:1394-1401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.