IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v46y2019i1p179-200.html
   My bibliography  Save this article

Evaluating the effect of compact urban form on air quality in Korea

Author

Listed:
  • Jung Eun Kang
  • D.K. Yoon
  • Hyun-Joo Bae

Abstract

Air quality is affected by the interplay between emission sources and urban planning factors such as land use, built environment, development pattern, and transportation. Few empirical studies have been conducted to determine the influence of urban form characteristics on air quality in Korea. Thus, the purpose of this research is to examine the relationship between urban form and air pollution, focusing on ozone pollution in Korea. The characteristics of urban form include density, concentration, clustering, and land use mix. In this study, those characteristics were measured by population density, the Theil index, Moran’s I index, G-statistic values, and an entropy index using statistical methods and a geographic information system. We employed a spatial regression model to consider the spatial effects of ozone concentrations. We found that the degree of urban land use mix, clustering, and concentration of development are significantly associated with better air quality by using a spatial lag model, which was found to be the best fit for the data used in this study. However, an increase in population density was found to be associated with exacerbated ozone concentrations. Communities with higher daily temperatures, a large number of cars, and polluting facilities exhibited poor air quality, while those with a larger percentage of residential land use tended to have lower ozone pollution. These findings suggest that, to properly address concerns over air quality, mixed-land use and compact urban form need to be more seriously considered in sustainable urban planning.

Suggested Citation

  • Jung Eun Kang & D.K. Yoon & Hyun-Joo Bae, 2019. "Evaluating the effect of compact urban form on air quality in Korea," Environment and Planning B, , vol. 46(1), pages 179-200, January.
  • Handle: RePEc:sae:envirb:v:46:y:2019:i:1:p:179-200
    DOI: 10.1177/2399808317705880
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808317705880
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808317705880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David M. Levinson & Ajay Kumar, 1997. "Density and the Journey to Work," Growth and Change, Wiley Blackwell, vol. 28(2), pages 147-172, March.
    2. Kichan Nam & Up Lim & Brian Kim, 2012. "‘Compact’ or ‘Sprawl’ for sustainable urban form? Measuring the effect on travel behavior in Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 157-173, August.
    3. H. Spencer Banzhaf & Randall P. Walsh, 2008. "Do People Vote with Their Feet? An Empirical Test of Tiebout," American Economic Review, American Economic Association, vol. 98(3), pages 843-863, June.
    4. Ewing, R. & Schieber, R.A. & Zegeer, C.V., 2003. "Urban Sprawl as a Risk Factor in Motor Vehicle Occupant and Pedestrian Fatalities," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1541-1545.
    5. Lisa Schweitzer & Jiangping Zhou, 2010. "Neighborhood Air Quality, Respiratory Health, and Vulnerable Populations in Compact and Sprawled Regions," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 363-371.
    6. Lamia Kamal-Chaoui & Alexis Robert, 2009. "Competitive Cities and Climate Change," OECD Regional Development Working Papers 2009/2, OECD Publishing.
    7. William P. Anderson & Pavlos S. Kanaroglou & Eric J. Miller, 1996. "Urban Form, Energy and the Environment: A Review of Issues, Evidence and Policy," Urban Studies, Urban Studies Journal Limited, vol. 33(1), pages 7-35, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    2. Frans M. Dieleman & Martin Dijst & Guillaume Burghouwt, 2002. "Urban Form and Travel Behaviour: Micro-level Household Attributes and Residential Context," Urban Studies, Urban Studies Journal Limited, vol. 39(3), pages 507-527, March.
    3. Safirova, Elena A. & Houde, Sébastien & Harrington, Winston, 2007. "Spatial Development and Energy Consumption," RFF Working Paper Series dp-07-51, Resources for the Future.
    4. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.
    5. Long Zhou & Guoqiang Shen & Yao Wu & Robert Brown & Tian Chen & Chenyu Wang, 2018. "Urban Form, Growth, and Accessibility in Space and Time: Anatomy of Land Use at the Parcel-Level in a Small to Medium-Sized American City," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    6. Peter Newman, 2014. "Density, the Sustainability Multiplier: Some Myths and Truths with Application to Perth, Australia," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    7. Yuxiang Zhang & Dongjie Guan & Xiujuan He & Boling Yin, 2022. "Simulation on the Evolution Trend of the Urban Sprawl Spatial Pattern in the Upper Reaches of the Yangtze River, China," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    8. Chunshan Zhou & Shijie Li & Shaojian Wang, 2018. "Examining the Impacts of Urban Form on Air Pollution in Developing Countries: A Case Study of China’s Megacities," IJERPH, MDPI, vol. 15(8), pages 1-18, July.
    9. Yuyao Ye & Changjian Wang & Yuling Zhang & Kangmin Wu & Qitao Wu & Yongxian Su, 2017. "Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    10. Jonathan Rutherford & Olivier Coutard, 2014. "Urban Energy Transitions: Places, Processes and Politics of Socio-technical Change," Urban Studies, Urban Studies Journal Limited, vol. 51(7), pages 1353-1377, May.
    11. Maud Haffner & Olivier Bonin & Gilles Vuidel, 2024. "Modelling the impact of urban form on daily mobility energy consumption using archetypal cities," Environment and Planning B, , vol. 51(4), pages 870-888, May.
    12. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2021. "Sustainability of Urbanization, Non-Agricultural Output and Air Pollution in the World’s Top 20 Polluting Countries," Data, MDPI, vol. 6(6), pages 1-16, June.
    13. Linlin Zhang & Xianfan Shu & Liang Zhang, 2023. "Urban Sprawl and Its Multidimensional and Multiscale Measurement," Land, MDPI, vol. 12(3), pages 1-17, March.
    14. Anura Amarasinghe & Gerard D'Souza & Cheryl Brown & Tatiana Borisova, 2006. "A Spatial Analysis of Obesity in West Virginia," Working Papers Working Paper 2006-13, Regional Research Institute, West Virginia University.
    15. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    16. Grisé, Emily & Buliung, Ron & Rothman, Linda & Howard, Andrew, 2018. "A geography of child and elderly pedestrian injury in the City of Toronto, Canada," Journal of Transport Geography, Elsevier, vol. 66(C), pages 321-329.
    17. Hausman, Catherine & Stolper, Samuel, 2021. "Inequality, information failures, and air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    18. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    19. Nishitateno, Shuhei & Burke, Paul J., 2021. "Willingness to pay for clean air: Evidence from diesel vehicle registration restrictions in Japan," Regional Science and Urban Economics, Elsevier, vol. 88(C).
    20. John B. Loomis, 2013. "Incorporating distributional issues into benefit–cost analysis: why, how, and two empirical examples using non-market valuation," Chapters, in: Scott O. Farrow & Richard Zerbe, Jr. (ed.), Principles and Standards for Benefit–Cost Analysis, chapter 9, pages 294-316, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:46:y:2019:i:1:p:179-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.