IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v40y2013i6p1071-1086.html
   My bibliography  Save this article

Urban Street Networks, a Comparative Analysis of Ten European Cities

Author

Listed:
  • Emanuele Strano

    (Laboratory of Geographic Information Systems, School of Architecture, Civil and Environmental Engineering, Ecole Polytechique Fédérale de Lausanne (EPFL), and Urban Design Studies Unit, Department of Architecture, University of Strathclyde, Glasgow, Scotland)

  • Matheus Viana
  • Luciano da Fontoura Costa
  • Alessio Cardillo

    (Departamento de Física de Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain, and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, E-50018 Zaragoza, Spain, and Dipartimento di Fisica e Astronomia, Università de Catania and INFN, Via S Sofia, 64, 95123 Catania, Italy)

  • Sergio Porta

    (Urban Design Studies Unit, Department of Architecture, University of Strathclyde, Glasgow, Scotland)

  • Vito Latora

    (School of Mathematical Sciences, Queen Mary, University of London, London, England, and Dipartimento di Fisica e Astronomia, Università di Catania and INFN, Via S Sofia, 64, 95123 Catania, Italy, and Laboratorio sui Sistemi Complessi, Scuola Superiore de Catania, Via San Nullo 5/I, 95123 Catania, Italy)

Abstract

We compare the structural properties of the street networks of ten different European cities using their primal representation. We investigate the properties of the geometry of the networks and a set of centrality measures highlighting differences and similarities between cases. In particular, we found that cities share structural similarities due to their quasiplanarity but that there are also several distinctive geometrical properties. A principal component analysis is performed on the distributions of centralities and their respective moments, which is used to find distinctive characteristics by which we can classify cities into families. We believe that, beyond the improvement of the empirical knowledge on streets' network properties, our findings can open new perspectives into the scientific relationship between city planning and complex networks, stimulating the debate on the effectiveness of the set of knowledge that statistical physics can contribute for city planning and urban-morphology studies.

Suggested Citation

  • Emanuele Strano & Matheus Viana & Luciano da Fontoura Costa & Alessio Cardillo & Sergio Porta & Vito Latora, 2013. "Urban Street Networks, a Comparative Analysis of Ten European Cities," Environment and Planning B, , vol. 40(6), pages 1071-1086, December.
  • Handle: RePEc:sae:envirb:v:40:y:2013:i:6:p:1071-1086
    DOI: 10.1068/b38216
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b38216
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b38216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    2. Carlo Ratti & Stanislav Sobolevsky & Francesco Calabrese & Clio Andris & Jonathan Reades & Mauro Martino & Rob Claxton & Steven H Strogatz, 2010. "Redrawing the Map of Great Britain from a Network of Human Interactions," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    2. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    3. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    4. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    5. Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    2. Xiaokun Su & Chenrouyu Zheng & Yefei Yang & Yafei Yang & Wen Zhao & Yue Yu, 2022. "Spatial Structure and Development Patterns of Urban Traffic Flow Network in Less Developed Areas: A Sustainable Development Perspective," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    3. Jeeno Soa George & Saikat Kumar Paul & Richa Dhawale, 2022. "Multilayer network structure and city size: A cross-sectional analysis of global cities to detect the correlation between street and terrain," Environment and Planning B, , vol. 49(5), pages 1448-1463, June.
    4. Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
    5. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    6. Ermal Shpuza, 2017. "Relative size measures of urban form based on allometric subtraction," Environment and Planning B, , vol. 44(1), pages 141-159, January.
    7. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    8. Sol Gamsu & Michael Donnelly, 2021. "Social Network Analysis Methods and the Geography of Education: Regional Divides and Elite Circuits in the School to University Transition in the UK," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 112(4), pages 370-386, September.
    9. Yao Shen & Michael Batty, 2019. "Delineating the perceived functional regions of London from commuting flows," Environment and Planning A, , vol. 51(3), pages 547-550, May.
    10. Enwei Zhu & Stanislav Sobolevsky, 2018. "House Price Modeling with Digital Census," Papers 1809.03834, arXiv.org.
    11. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    12. Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    13. V. I. Blanutsa & K. A. Cherepanov, 2019. "Regional Information Flows: Existing and New Approaches to Geographical Study," Regional Research of Russia, Springer, vol. 9(1), pages 97-106, January.
    14. Hiroyuki Usui & Yasushi Asami, 2020. "Size Distribution of Building Lots and Density of Buildings and Road Networks: Theoretical Derivation Based on Gibrat’s Law and Empirical Study of Downtown Districts in Tokyo," International Regional Science Review, , vol. 43(3), pages 229-253, May.
    15. Lin, Jingyi, 2012. "Network analysis of China’s aviation system, statistical and spatial structure," Journal of Transport Geography, Elsevier, vol. 22(C), pages 109-117.
    16. Ruth Hamilton & Alasdair Rae, 2020. "Regions from the ground up: a network partitioning approach to regional delineation," Environment and Planning B, , vol. 47(5), pages 775-789, June.
    17. Francesc Valls & Josep Roca, 2021. "Visualizing Digital Traces for Sustainable Urban Management: Mapping Tourism Activity on the Virtual Public Space," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    18. Fan, Jijian & Friedman, Daniel & Gair, Jonathan & Iyer, Sriya & Redlicki, Bartosz & Velu, Chander, 2021. "A simulation study of how religious fundamentalism takes root," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 465-481.
    19. Steenbruggen, John & Tranos, Emmanouil & Nijkamp, Peter, 2015. "Data from mobile phone operators: A tool for smarter cities?," Telecommunications Policy, Elsevier, vol. 39(3), pages 335-346.
    20. Anderson, Taylor M. & Dragićević, Suzana, 2018. "Network-agent based model for simulating the dynamic spatial network structure of complex ecological systems," Ecological Modelling, Elsevier, vol. 389(C), pages 19-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:40:y:2013:i:6:p:1071-1086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.