IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v44y2017i1p141-159.html
   My bibliography  Save this article

Relative size measures of urban form based on allometric subtraction

Author

Listed:
  • Ermal Shpuza

Abstract

One of the most common relativization techniques in life sciences quantifies body condition based on residuals from the linear regression in the log–log plot of body mass against a linear measure of size. Given the network-based analogy between organisms and cities, the method is applied to comparative urban studies to formulate relativized allometric measures based on the allometry to size of metric and topological measures of street networks. The analysis of a sample of 70 cities from a confined region considered in three historical stages demonstrates that the more allometric scaling of a measure to size diverges from the linear, the more allometric measures show discrepancy to the existing relativization methods that are based on mean measures and ratios between measures. Allometric measures reflect the dynamics of specific regional samples of cities and therefore also differ from relativization methods that relate measures that grow exponentially with size against static theoretical yardsticks. The comparison involving two additional samples of cities from other regions suggests that the proposed allometric measures can be used to approximate size-invariant measures for cities with unknown allometry more reliably than existing relativization measures. The method can be applied to formulate relativized indices for any measure that displays allometry to size in various scales of the built environment.

Suggested Citation

  • Ermal Shpuza, 2017. "Relative size measures of urban form based on allometric subtraction," Environment and Planning B, , vol. 44(1), pages 141-159, January.
  • Handle: RePEc:sae:envirb:v:44:y:2017:i:1:p:141-159
    DOI: 10.1177/0265813515611420
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0265813515611420
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0265813515611420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    2. Richard A. Kronmal, 1993. "Spurious Correlation and the Fallacy of the Ratio Standard Revisited," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 156(3), pages 379-392, May.
    3. Samaniego, Horacio & Moses, Melanie E., 2008. "Cities as Organisms: Allometric Scaling of Urban Road Networks," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 1(1), pages 21-39.
    4. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    5. Carvalho, Rui & Penn, Alan, 2004. "Scaling and universality in the micro-structure of urban space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 539-547.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    2. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    3. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    4. Asya Natapov & Daniel Czamanski & Dafna Fisher-Gewirtzman, 2018. "A Network Approach to Link Visibility and Urban Activity Location," Networks and Spatial Economics, Springer, vol. 18(3), pages 555-575, September.
    5. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    6. Liang Huang & Xinyan Zhu & Xinyue Ye & Wei Guo & Jiye Wang, 2016. "Characterizing street hierarchies through network analysis and large-scale taxi traffic flow: a case study of Wuhan, China," Environment and Planning B, , vol. 43(2), pages 276-296, March.
    7. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    8. Yves Bettignies & Joao Meirelles & Gabriela Fernandez & Franziska Meinherz & Paul Hoekman & Philippe Bouillard & Aristide Athanassiadis, 2019. "The Scale-Dependent Behaviour of Cities: A Cross-Cities Multiscale Driver Analysis of Urban Energy Use," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    9. Hadi Arbabi & Martin Mayfield & Philip McCann, 2020. "Productivity, infrastructure and urban density—an allometric comparison of three European city regions across scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 211-228, January.
    10. Bogusław Wowrzeczka, 2021. "City of Waste—Importance of Scale," Sustainability, MDPI, vol. 13(7), pages 1-14, April.
    11. Luiz G A Alves & Renio S Mendes & Ervin K Lenzi & Haroldo V Ribeiro, 2015. "Scale-Adjusted Metrics for Predicting the Evolution of Urban Indicators and Quantifying the Performance of Cities," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    12. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    13. Alok Bhargava, 2006. "Modelling the Health of Filipino Children," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 11, pages 153-168, World Scientific Publishing Co. Pte. Ltd..
    14. Ines Helm & Jan Stuhler, 2024. "The Dynamic Response of Municipal Budgets to Revenue Shocks," American Economic Journal: Applied Economics, American Economic Association, vol. 16(4), pages 484-527, October.
    15. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Campo, Francesco & Giunti, Sara & Mendola, Mariapia, 2024. "Refugee crisis and right-wing populism: Evidence from the Italian Dispersal Policy," European Economic Review, Elsevier, vol. 168(C).
    17. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    18. Delphine Boutin, 2014. "Climate vulnerability, communities' resilience and child labour," Revue d'économie politique, Dalloz, vol. 124(4), pages 625-638.
    19. Battiston, Pietro & Gamba, Simona, 2021. "COVID-19: R0 is lower where outbreak is larger," Health Policy, Elsevier, vol. 125(2), pages 141-147.
    20. Joao Meirelles & Camilo Rodrigues Neto & Fernando Fagundes Ferreira & Fabiano Lemes Ribeiro & Claudia Rebeca Binder, 2018. "Evolution of urban scaling: Evidence from Brazil," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:44:y:2017:i:1:p:141-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.