IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v39y2012i2p393-405.html
   My bibliography  Save this article

Network Effects in Schelling's Model of Segregation: New Evidence from Agent-Based Simulation

Author

Listed:
  • Amaud Banos

    (Équipe PARIS, Géographie-Cités, UMR 8504 Université Paris 1/CNRS and Paris/Île-de-France Complex Systems Institute (ISC-PIF))

Abstract

According to two recent studies, Thomas Schelling's model of segregation is only weakly affected by the underlying spatial structure whatever its complexity. Such a conclusion is important from an urban planning perspective as it suggests that only a very restricted range of possible actions, if any, would be able to contribute to limiting social segregation, unless individual preferences are significantly modified. My own simulations show that, using appropriate graph-based spatial structures, one can reveal significant spatial effects and thus provide alternative planning insights. Cliques in networks indeed play a significant role, reinforcing segregation effects in Schelling's model. Introducing a small amount of noise into the model permits us to reveal this effect more precisely, without modifying the global behavior of the initial model. Furthermore, I show how a logistic model describes in a concise but precise way this global behavior at an aggregated level.

Suggested Citation

  • Amaud Banos, 2012. "Network Effects in Schelling's Model of Segregation: New Evidence from Agent-Based Simulation," Environment and Planning B, , vol. 39(2), pages 393-405, April.
  • Handle: RePEc:sae:envirb:v:39:y:2012:i:2:p:393-405
    DOI: 10.1068/b37068
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b37068
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b37068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fagiolo, Giorgio & Valente, Marco & Vriend, Nicolaas J., 2007. "Segregation in networks," Journal of Economic Behavior & Organization, Elsevier, vol. 64(3-4), pages 316-336.
    2. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    3. L. Gauvin & J. Vannimenus & J.-P. Nadal, 2009. "Phase diagram of a Schelling segregation model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(2), pages 293-304, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guifeng Su & Yi Zhang, 2023. "Significant suppression of segregation in Schelling’s metapopulation model with star-type underlying topology," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(7), pages 1-6, July.
    2. Sheng Li & Kuo-Liang Chang & Lanlan Wang, 2020. "Racial residential segregation in multiple neighborhood markets: a dynamic sorting study," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(2), pages 363-383, April.
    3. Zhiwei Cui & Yan-An Hwang, 2017. "House exchange and residential segregation in networks," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 125-147, March.
    4. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    5. Grauwin, Sébastian & Goffette-Nagot, Florence & Jensen, Pablo, 2012. "Dynamic models of residential segregation: An analytical solution," Journal of Public Economics, Elsevier, vol. 96(1), pages 124-141.
    6. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    7. Ermal Shpuza, 2017. "Relative size measures of urban form based on allometric subtraction," Environment and Planning B, , vol. 44(1), pages 141-159, January.
    8. Anand Sahasranaman & Henrik Jeldtoft Jensen, 2018. "Ethnicity and wealth: The dynamics of dual segregation," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
    9. Isabel Melguizo, 2023. "Group representation concerns and network formation," Bulletin of Economic Research, Wiley Blackwell, vol. 75(1), pages 151-179, January.
    10. Giorgio Fagiolo & Marco Valente & Nicolaas J. Vriend, 2009. "A Dynamic Model of Segregation in Small-World Networks," Lecture Notes in Economics and Mathematical Systems, in: Ahmad K. Naimzada & Silvana Stefani & Anna Torriero (ed.), Networks, Topology and Dynamics, pages 111-126, Springer.
    11. Shin, J.K. & Jung, P.S., 2013. "Analysis of phase transition points for a two-color agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1863-1872.
    12. Florence Goffette-Nagot & Pablo Jensen & Sebastian Grauwin, 2009. "Dynamic models of residential segregation: Brief review, analytical resolution and study of the introduction of coordination," Post-Print halshs-00404400, HAL.
    13. Lin, Jingyi, 2012. "Network analysis of China’s aviation system, statistical and spatial structure," Journal of Transport Geography, Elsevier, vol. 22(C), pages 109-117.
    14. Ribin Lye & James Peng Lung Tan & Siew Ann Cheong, 2012. "Understanding agent-based models of financial markets: a bottom-up approach based on order parameters and phase diagrams," Papers 1202.0606, arXiv.org.
    15. Li Qin & Eleftherios Spyromitros & Moïse Sidiropoulos, 2007. "Monetary Policy with Uncertain Central Bank Preferences for Robustness," Working Papers of BETA 2007-23, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    16. Asya Natapov & Daniel Czamanski & Dafna Fisher-Gewirtzman, 2018. "A Network Approach to Link Visibility and Urban Activity Location," Networks and Spatial Economics, Springer, vol. 18(3), pages 555-575, September.
    17. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    18. Rachel Levy & Paul Muller, 2006. "Do academic laboratories correspond to scientific communities? Evidence from a large European university," Working Papers of BETA 2006-15, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    19. Basnak, Paul & Giesen, Ricardo & Muñoz, Juan Carlos, 2020. "Technology choices in public transport planning: A classification framework," Research in Transportation Economics, Elsevier, vol. 83(C).
    20. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:39:y:2012:i:2:p:393-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.