IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v38y2011i5p903-920.html
   My bibliography  Save this article

Modeling Urban Landscape Dynamics Using Subpixel Fractions and Fuzzy Cellular Automata

Author

Listed:
  • Junmei Tang

    (Department of Geography and Environmental Systems, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA)

Abstract

This study proposes a fuzzy cellular automata model based on the subpixel fractions extracted from multitemporal satellite images and discusses the relationship between sophisticated remote sensing techniques and an urban process model within the socioeconomic dimension. Accordingly, the major objectives of the present research are: (1) to incorporate the subpixel membership derived from remote sensing images into a fuzzy cellular automata model to simulate urban landscape change; (2) to standardize the quantitative method to incorporate subpixel information into a subcell cellular automata model and to find a better way to determine the parameters in the model's development, calibration, and validation. The comparison between the traditional cell-based model and subcell model suggests that the subpixel technique improves the accuracy of both urban mapping and modeling using medium resolution satellite images.

Suggested Citation

  • Junmei Tang, 2011. "Modeling Urban Landscape Dynamics Using Subpixel Fractions and Fuzzy Cellular Automata," Environment and Planning B, , vol. 38(5), pages 903-920, October.
  • Handle: RePEc:sae:envirb:v:38:y:2011:i:5:p:903-920
    DOI: 10.1068/b36087
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b36087
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b36087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    2. Manfred M. Fischer & Arthur Getis, 1997. "Advances in Spatial Analysis," Advances in Spatial Science, in: Manfred M. Fischer & Arthur Getis (ed.), Recent Developments in Spatial Analysis, chapter 1, pages 1-12, Springer.
    3. Liu, Xiaoping & Li, Xia & Shi, Xun & Wu, Shaokun & Liu, Tao, 2008. "Simulating complex urban development using kernel-based non-linear cellular automata," Ecological Modelling, Elsevier, vol. 211(1), pages 169-181.
    4. Eric J. Heikkila & Ti-yan Shen & Kai-zhong Yang, 2003. "Fuzzy Urban Sets: Theory and Application to Desakota Regions in China," Working Paper 8617, USC Lusk Center for Real Estate.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Hadi Saputra & Han Soo Lee, 2019. "Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
    2. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    3. Jinyao Lin & Tongli Chen & Qiazi Han, 2018. "Simulating and Predicting the Impacts of Light Rail Transit Systems on Urban Land Use by Using Cellular Automata: A Case Study of Dongguan, China," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    4. José I Barredo & Luca Demicheli & Carlo Lavalle & Marjo Kasanko & Niall McCormick, 2004. "Modelling Future Urban Scenarios in Developing Countries: An Application Case Study in Lagos, Nigeria," Environment and Planning B, , vol. 31(1), pages 65-84, February.
    5. Caruso, Geoffrey & Peeters, Dominique & Cavailhes, Jean & Rounsevell, Mark, 2007. "Spatial configurations in a periurban city. A cellular automata-based microeconomic model," Regional Science and Urban Economics, Elsevier, vol. 37(5), pages 542-567, September.
    6. C J Webster & F Wu, 1999. "Regulation, Land-Use Mix, and Urban Performance. Part 1: Theory," Environment and Planning A, , vol. 31(8), pages 1433-1442, August.
    7. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    8. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    9. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    10. Man, Wang & Nie, Qin & Li, Zongmei & Li, Hui & Wu, Xuewen, 2019. "Using fractals and multifractals to characterize the spatiotemporal pattern of impervious surfaces in a coastal city: Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 44-53.
    11. André Ménard & Danielle J Marceau, 2005. "Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata," Environment and Planning B, , vol. 32(5), pages 693-714, October.
    12. Haozhi Pan & Stan Geertman & Brian Deal, 2020. "What does urban informatics add to planning support technology?," Environment and Planning B, , vol. 47(8), pages 1317-1325, October.
    13. Md. Monjure Alam Pramanik & Demetris Stathakis, 2016. "Forecasting urban sprawl in Dhaka city of Bangladesh," Environment and Planning B, , vol. 43(4), pages 756-771, July.
    14. Yanguang Chen & Yixing Zhou, 2003. "The Rank-Size Rule and Fractal Hierarchies of Cities: Mathematical Models and Empirical Analyses," Environment and Planning B, , vol. 30(6), pages 799-818, December.
    15. Xia Li & Anthony Gar-On Yeh, 2001. "Calibration of Cellular Automata by Using Neural Networks for the Simulation of Complex Urban Systems," Environment and Planning A, , vol. 33(8), pages 1445-1462, August.
    16. Yan Liu & Yongjiu Feng & Robert Gilmore Pontius, 2014. "Spatially-Explicit Simulation of Urban Growth through Self-Adaptive Genetic Algorithm and Cellular Automata Modelling," Land, MDPI, vol. 3(3), pages 1-20, July.
    17. Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
    18. Jian Feng & Yanguang Chen, 2021. "Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    19. Bosch, Martí & Chenal, Jérôme & Joost, Stéphane, 2019. "Addressing urban sprawl from the complexity sciences," MPRA Paper 93489, University Library of Munich, Germany.
    20. Chen, Yanguang, 2009. "Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1766-1778.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:38:y:2011:i:5:p:903-920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.