IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3024-d235112.html
   My bibliography  Save this article

Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton

Author

Listed:
  • Muhammad Hadi Saputra

    (Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Hiroshima, Japan
    Environmental and Forestry Research and Development Agency of Aek Nauli, Sibaganding, Simalungun 21174, North Sumatra, Indonesia)

  • Han Soo Lee

    (Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Hiroshima, Japan)

Abstract

Land use and land cover (LULC) form a baseline thematic map for monitoring, resource management, and planning activities and facilitate the development of strategies to balance conservation, conflicting uses, and development pressures. In this study, changes in LULC in North Sumatra, Indonesia, are simulated and predicted using an artificial-neural-network-based cellular automaton (ANN-CA) model. Five criteria (altitude, slope, aspect, distance from the road, and soil type) are used as exploratory data in the learning process of the ANN-CA model to determine their impacts on LULC changes between 1990 and 2000; among the criteria, altitude and distance from the road have strong impacts. Comparison between the predicted and the real LULC maps for 2010 illustrates high agreement, with a Kappa index of 0.83 and a percentage of correctness of 87.28%. Then, the ANN-CA model is applied to predict LULC changes in 2050 and 2070. The LULC predictions for 2050 and 2070 demonstrate high increases in plantation area of more than 4%. Meanwhile, forest and crop area are projected to decrease by approximately 1.2% and 1.6%, respectively, by 2050. By 2070, forest and crop areas will decrease by 1.2% and 1.7%, respectively, indicating human influences on LULC changes from forest and cropland to plantations. This study illustrates that the simulation of LULC changes using the ANN-CA model can produce reliable predictions for future LULC.

Suggested Citation

  • Muhammad Hadi Saputra & Han Soo Lee, 2019. "Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3024-:d:235112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juliette Rouchier & François Bousquet & Mélanie Requier-Desjardins & Martine Antona, 2001. "A Multi-Agent Model for Describing Transhumance in North Cameroon: Comparison of Different Rationality to Develop a Routine," Post-Print halshs-00550482, HAL.
    2. Liu, Xiaoping & Li, Xia & Shi, Xun & Wu, Shaokun & Liu, Tao, 2008. "Simulating complex urban development using kernel-based non-linear cellular automata," Ecological Modelling, Elsevier, vol. 211(1), pages 169-181.
    3. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    4. M Batty & Y Xie, 1994. "From Cells to Cities," Environment and Planning B, , vol. 21(7), pages 31-48, December.
    5. Chen Liping & Sun Yujun & Sajjad Saeed, 2018. "Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    6. Xia Li & Guangzhao Chen & Xiaoping Liu & Xun Liang & Shaojian Wang & Yimin Chen & Fengsong Pei & Xiaocong Xu, 2017. "A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(5), pages 1040-1059, September.
    7. M Batty & H Couclelis & M Eichen, 1997. "Urban Systems as Cellular Automata," Environment and Planning B, , vol. 24(2), pages 159-164, April.
    8. Rouchier, Juliette & Bousquet, Francois & Requier-Desjardins, Melanie & Antona, Martine, 2001. "A multi-agent model for describing transhumance in North Cameroon: Comparison of different rationality to develop a routine," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 527-559, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Shihab Uddin & Badal Mahalder & Debabrata Mahalder, 2023. "Assessment of Land Use Land Cover Changes and Future Predictions Using CA-ANN Simulation for Gazipur City Corporation, Bangladesh," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    2. Chunliu Gao & Deqiang Cheng & Javed Iqbal & Shunyu Yao, 2023. "Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards," Land, MDPI, vol. 12(2), pages 1-24, January.
    3. Zhenjie Liao & Lijuan Zhang, 2023. "Spatio-temporal evolution and future simulation of urban agglomeration expansion in the Guangdong–Hongkong–Macau Greater Bay Area," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    4. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    5. Muhammad Hadi Saputra & Han Soo Lee, 2021. "Evaluation of Climate Change Impacts on the Potential Distribution of Styrax sumatrana in North Sumatra, Indonesia," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    6. Mert Can Gunacti & Gulay Onusluel Gul & Cem P. Cetinkaya & Ali Gul & Filiz Barbaros, 2023. "Evaluating Impact of Land Use and Land Cover Change Under Climate Change on the Lake Marmara System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2643-2656, May.
    7. Dong-Feng Ren & Ai-Hua Cao & Fei-Yue Wang, 2023. "Response and Multi-Scenario Prediction of Carbon Storage and Habitat Quality to Land Use in Liaoning Province, China," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    8. Bhanage Vinayak & Han Soo Lee & Shirishkumar Gedem, 2021. "Prediction of Land Use and Land Cover Changes in Mumbai City, India, Using Remote Sensing Data and a Multilayer Perceptron Neural Network-Based Markov Chain Model," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    9. Pere Serra & Luca Salvati, 2022. "Land Change Science and the STEPLand Framework: An Assessment of Its Progress," Land, MDPI, vol. 11(7), pages 1-38, July.
    10. Saulo Folharini & António Vieira & António Bento-Gonçalves & Sara Silva & Tiago Marques & Jorge Novais, 2023. "A Framework Using Open-Source Software for Land Use Prediction and Climate Data Time Series Analysis in a Protected Area of Portugal: Alvão Natural Park," Land, MDPI, vol. 12(7), pages 1-16, June.
    11. Mirza Waleed & Muhammad Sajjad & Anthony Owusu Acheampong & Md. Tauhidul Alam, 2023. "Towards Sustainable and Livable Cities: Leveraging Remote Sensing, Machine Learning, and Geo-Information Modelling to Explore and Predict Thermal Field Variance in Response to Urban Growth," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    12. Qihao Wang & Dongya Liu & Feiyao Gao & Xinqi Zheng & Yiqun Shang, 2023. "A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model," Land, MDPI, vol. 12(2), pages 1-20, February.
    13. Amit Kumar & Raghvender Pratap Singh & Swatantra Kumar Dubey & Kumar Gaurav, 2022. "Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    14. Linfeng Xu & Xuan Liu & De Tong & Zhixin Liu & Lirong Yin & Wenfeng Zheng, 2022. "Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model," Land, MDPI, vol. 11(5), pages 1-16, April.
    15. Zaheer Abbas & Guang Yang & Yuanjun Zhong & Yaolong Zhao, 2021. "Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China," Land, MDPI, vol. 10(6), pages 1-26, June.
    16. Nguyen Hong Giang & Yu-Ren Wang & Tran Dinh Hieu & Nguyen Huu Ngu & Thanh-Tuan Dang, 2022. "Estimating Land-Use Change Using Machine Learning: A Case Study on Five Central Coastal Provinces of Vietnam," Sustainability, MDPI, vol. 14(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyao Lin & Tongli Chen & Qiazi Han, 2018. "Simulating and Predicting the Impacts of Light Rail Transit Systems on Urban Land Use by Using Cellular Automata: A Case Study of Dongguan, China," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    2. Anthony Patt & Bernd Siebenhüner, 2005. "Agent Based Modeling and Adaption to Climate Change," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 74(2), pages 310-320.
    3. Yan Liu & Yongjiu Feng, 2016. "Simulating the Impact of Economic and Environmental Strategies on Future Urban Growth Scenarios in Ningbo, China," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    4. Narine Udumyan & Juliette Rouchier & Dominique Ami, 2014. "Integration of Path-Dependency in a Simple Learning Model: The Case of Marine Resources," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 199-231, February.
    5. Juliette Rouchier, 2013. "The Interest of Having Loyal Buyers in a Perishable Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 151-170, February.
    6. Bosch, Martí & Chenal, Jérôme & Joost, Stéphane, 2019. "Addressing urban sprawl from the complexity sciences," MPRA Paper 93489, University Library of Munich, Germany.
    7. Rongxu Qiu & Wei Xu & John Zhang & Karl Staenz, 2018. "Modeling and simulating industrial land-use evolution in Shanghai, China," Journal of Geographical Systems, Springer, vol. 20(1), pages 57-83, January.
    8. Rosaria Conte & Bruce Edmonds & Scott Moss & R. Keith Sawyer, 2001. "Sociology and Social Theory in Agent Based Social Simulation: A Symposium," Computational and Mathematical Organization Theory, Springer, vol. 7(3), pages 183-205, October.
    9. Joïlle Noailly & Jeroen C.J.M. van den Bergh & Cees A. Withagen, 2003. "Evolution of harvesting strategies: replicator and resource dynamics," Journal of Evolutionary Economics, Springer, vol. 13(2), pages 183-200, April.
    10. repec:grz:wpaper:2013-06 is not listed on IDEAS
    11. Liu, Xiaoping & Li, Xia & Shi, Xun & Wu, Shaokun & Liu, Tao, 2008. "Simulating complex urban development using kernel-based non-linear cellular automata," Ecological Modelling, Elsevier, vol. 211(1), pages 169-181.
    12. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    13. Junmei Tang, 2011. "Modeling Urban Landscape Dynamics Using Subpixel Fractions and Fuzzy Cellular Automata," Environment and Planning B, , vol. 38(5), pages 903-920, October.
    14. Stefano Balbi & Carlo Giupponi, 2009. "Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability," Working Papers 2009_15, Department of Economics, University of Venice "Ca' Foscari".
    15. Liu, Xiaoping & Ou, Jinpei & Chen, Yimin & Wang, Shaojian & Li, Xia & Jiao, Limin & Liu, Yaolin, 2019. "Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures," Applied Energy, Elsevier, vol. 238(C), pages 1163-1178.
    16. Ye Zhou & Feng Zhang & Zhenhong Du & Xinyue Ye & Renyi Liu, 2017. "Integrating Cellular Automata with the Deep Belief Network for Simulating Urban Growth," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    17. Kwok Hung Lau & Booi Hon Kam, 2005. "A Cellular Automata Model for Urban Land-Use Simulation," Environment and Planning B, , vol. 32(2), pages 247-263, April.
    18. José I Barredo & Luca Demicheli & Carlo Lavalle & Marjo Kasanko & Niall McCormick, 2004. "Modelling Future Urban Scenarios in Developing Countries: An Application Case Study in Lagos, Nigeria," Environment and Planning B, , vol. 31(1), pages 65-84, February.
    19. Caruso, Geoffrey & Peeters, Dominique & Cavailhes, Jean & Rounsevell, Mark, 2007. "Spatial configurations in a periurban city. A cellular automata-based microeconomic model," Regional Science and Urban Economics, Elsevier, vol. 37(5), pages 542-567, September.
    20. Shuting Bai & Jiuchun Yang & Yubo Zhang & Fengqin Yan & Lingxue Yu & Shuwen Zhang, 2022. "Evaluating Ecosystem Services and Trade-Offs Based on Land-Use Simulation: A Case Study in the Farming–Pastoral Ecotone of Northern China," Land, MDPI, vol. 11(7), pages 1-17, July.
    21. Giovanni A. Rabino & Lorenzo Papini & Silvana T. Lombardo & Antonio Colonna & Vittorio Di Stefano, 1998. "L.A.U.D.E: Learning Automata for Urban Development Exploration. The Case Study of Rome Urban System," ERSA conference papers ersa98p302, European Regional Science Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3024-:d:235112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.