IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v520y2019icp44-53.html
   My bibliography  Save this article

Using fractals and multifractals to characterize the spatiotemporal pattern of impervious surfaces in a coastal city: Xiamen, China

Author

Listed:
  • Man, Wang
  • Nie, Qin
  • Li, Zongmei
  • Li, Hui
  • Wu, Xuewen

Abstract

Impervious surfaces (IS) constitute a quantifiable metric for urbanization and ecological environmental assessment. This study estimated the IS in the subtropical coastal area of Xiamen, southeastern China, from TM/OLI images obtained in 1994, 2000, 2004, 2010, and 2015. Two-dimension box-counting and two-dimension multifractal box-counting method were employed to quantitatively characterize the fractal and multifractal features of the spatial patterns of the IS. Results suggest that the spatial patterns observed during the study period are typical fractal structures with scale invariance, and the fractal dimension reveals the spatio-temporal complexity. Increasing the pixel binarization threshold decreases the spatial complexity of the IS pattern. The increasing dimension values over time show that the IS patterns become more complex and the spatial distribution becomes more clustered from 1994 to 2015. The two-dimension multifractal approach can transform an irregular IS pattern into a compact form and amplify small differences between different data series. The results revealed multifractality in the five study years, which varied throughout the study period, but the probability distribution shows a slightly decreasing trend. The probability of a given pixel having a high IS-fraction is consistently high in the study area, as indicated by the positive ratio between the regions where the probability measure appears most concentrated and most sparse.

Suggested Citation

  • Man, Wang & Nie, Qin & Li, Zongmei & Li, Hui & Wu, Xuewen, 2019. "Using fractals and multifractals to characterize the spatiotemporal pattern of impervious surfaces in a coastal city: Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 44-53.
  • Handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:44-53
    DOI: 10.1016/j.physa.2018.12.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118315541
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.12.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    2. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    3. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    4. Chen, Yanguang & Lin, Jingyi, 2009. "Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 615-629.
    5. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    6. Chen, Yanguang & Jiang, Shiguo, 2009. "An analytical process of the spatio-temporal evolution of urban systems based on allometric and fractal ideas," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 49-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Man & Qin Nie & Lizhong Hua & Xuewen Wu & Hui Li, 2019. "Spatio–Temporal Variations in Impervious Surface Patterns during Urban Expansion in a Coastal City: Xiamen, China," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
    2. Saeedimoghaddam, Mahmoud & Stepinski, T.F. & Dmowska, Anna, 2020. "Rényi’s spectra of urban form for different modalities of input data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haosu Zhao & Bart Julien Dewancker & Feng Hua & Junping He & Weijun Gao, 2020. "Restrictions of Historical Tissues on Urban Growth, Self-Sustaining Agglomeration in Walled Cities of Chinese Origin," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    2. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    3. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    4. Chen, Yanguang & Feng, Jian, 2017. "Spatial analysis of cities using Renyi entropy and fractal parameters," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 279-287.
    5. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    6. Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.
    7. Chen, Yanguang, 2014. "Urban chaos and replacement dynamics in nature and society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 373-384.
    8. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    9. Jian Feng & Yanguang Chen, 2010. "Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals," Environment and Planning B, , vol. 37(5), pages 838-856, October.
    10. Fatemeh Jahanmiri & Dawn Cassandra Parker, 2022. "An Overview of Fractal Geometry Applied to Urban Planning," Land, MDPI, vol. 11(4), pages 1-23, March.
    11. Lang, Wei & Long, Ying & Chen, Tingting & Li, Xun, 2019. "Reinvestigating China’s urbanization through the lens of allometric scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1429-1439.
    12. Wang, Ping & Gu, Changgui & Yang, Huijie & Wang, Haiying, 2022. "The multi-scale structural complexity of urban morphology in China," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    14. Liu, Jie & Zhang, Lang & Zhang, Qingping & Li, Chao & Zhang, Guilian & Wang, Yuncai, 2022. "Spatiotemporal evolution differences of urban green space: A comparative case study of Shanghai and Xuchang in China," Land Use Policy, Elsevier, vol. 112(C).
    15. José I Barredo & Luca Demicheli & Carlo Lavalle & Marjo Kasanko & Niall McCormick, 2004. "Modelling Future Urban Scenarios in Developing Countries: An Application Case Study in Lagos, Nigeria," Environment and Planning B, , vol. 31(1), pages 65-84, February.
    16. Caruso, Geoffrey & Peeters, Dominique & Cavailhes, Jean & Rounsevell, Mark, 2007. "Spatial configurations in a periurban city. A cellular automata-based microeconomic model," Regional Science and Urban Economics, Elsevier, vol. 37(5), pages 542-567, September.
    17. C J Webster & F Wu, 1999. "Regulation, Land-Use Mix, and Urban Performance. Part 1: Theory," Environment and Planning A, , vol. 31(8), pages 1433-1442, August.
    18. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    19. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    20. André Ménard & Danielle J Marceau, 2005. "Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata," Environment and Planning B, , vol. 32(5), pages 693-714, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:44-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.