IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i4p1766-1778.html
   My bibliography  Save this article

Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality

Author

Listed:
  • Chen, Yanguang

Abstract

A pair of nonlinear programming models is built to explain the fractal structure of systems of cities and those of rivers. The hierarchies of cities can be characterized by a set of exponential functions, which is identical in form to the Horton–Strahler’s laws of the river networks. Four power laws can be derived from these exponential functions. The evolution of both systems of cities and rivers are then represented as nonlinear dual programming models: to maximize information entropy subject to a certain energy use or to minimize energy dissipation subject to certain information capacity. The optimal solutions of the programming problems are just the exponential equations associated with scaling relations. By doing so, fractals and the self-organized criticality marked by the power laws are interpreted using the idea from the entropy-maximization principle, which gives further weight to the suggestion that optimality of the system as a whole defines the dynamical origin of fractal forms in both nature and society.

Suggested Citation

  • Chen, Yanguang, 2009. "Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1766-1778.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1766-1778
    DOI: 10.1016/j.chaos.2007.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907008077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    2. Krugman, Paul, 1996. "Confronting the Mystery of Urban Hierarchy," Journal of the Japanese and International Economies, Elsevier, vol. 10(4), pages 399-418, December.
    3. Michael Batty & Yichun Xie, 1999. "Self-organized criticality and urban development," Discrete Dynamics in Nature and Society, Hindawi, vol. 3, pages 1-16, January.
    4. Guida, Michele & Maria, Funaro, 2007. "Topology of the Italian airport network: A scale-free small-world network with a fractal structure?," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 527-536.
    5. A. Stewart Fotheringham & Michael Batty & Paul A. Longley, 1989. "Diffusion‐Limited Aggregation And The Fractal Nature Of Urban Growth," Papers in Regional Science, Wiley Blackwell, vol. 67(1), pages 55-69, January.
    6. Lucien Benguigui & Daniel Czamanski & Maria Marinov & Yuval Portugali, 2000. "When and Where is a City Fractal?," Environment and Planning B, , vol. 27(4), pages 507-519, August.
    7. Chen, Yanguang & Zhou, Yixing, 2008. "Scaling laws and indications of self-organized criticality in urban systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 85-98.
    8. Claes Andersson & Steen Rasmussen & Roger White, 2002. "Urban Settlement Transitions," Environment and Planning B, , vol. 29(6), pages 841-865, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yanguang, 2011. "Fractal systems of central places based on intermittency of space-filling," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 619-632.
    2. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    3. Chen, Yanguang, 2012. "The rank-size scaling law and entropy-maximizing principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 767-778.
    4. Moreno-Pulido, Soledad & Pavón-Domínguez, Pablo & Burgos-Pintos, Pedro, 2021. "Temporal evolution of multifractality in the Madrid Metro subway network," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Chen, Yanguang, 2012. "The mathematical relationship between Zipf’s law and the hierarchical scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3285-3299.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    2. Chen, Yanguang & Zhou, Yixing, 2008. "Scaling laws and indications of self-organized criticality in urban systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 85-98.
    3. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    4. Chen, Yanguang & Lin, Jingyi, 2009. "Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 615-629.
    5. Jian Feng & Yanguang Chen, 2021. "Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    6. Chen, Yanguang, 2011. "Fractal systems of central places based on intermittency of space-filling," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 619-632.
    7. Chen, Yanguang & Huang, Linshan, 2018. "A scaling approach to evaluating the distance exponent of the urban gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 303-313.
    8. Boeing, Geoff, 2017. "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction," SocArXiv c7p43, Center for Open Science.
    9. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    10. Yanguang Chen & Yixing Zhou, 2006. "Reinterpreting Central Place Networks Using Ideas from Fractals and Self-Organized Criticality," Environment and Planning B, , vol. 33(3), pages 345-364, June.
    11. Qindong Fan & Fengtian Du & Hu Li, 2020. "A Study of the Spatial Form of Maling Village, Henan, China," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    12. Yanguang Chen & Yixing Zhou, 2003. "The Rank-Size Rule and Fractal Hierarchies of Cities: Mathematical Models and Empirical Analyses," Environment and Planning B, , vol. 30(6), pages 799-818, December.
    13. Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
    14. James R. Fain, 2017. "City formation with complex landscapes," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(4), pages 125-137, October.
    15. Angelina Hackmann & Torben Klarl, 2020. "The evolution of Zipf's Law for U.S. cities," Papers in Regional Science, Wiley Blackwell, vol. 99(3), pages 841-852, June.
    16. Lucien Benguigui & Efrat Blumenfeld-Lieberthal & Daniel Czamanski, 2006. "The Dynamics of the Tel Aviv Morphology," Environment and Planning B, , vol. 33(2), pages 269-284, April.
    17. Song, Zhijun & Jin, Wenxuan & Jiang, Guanghui & Li, Sichun & Ma, Wenqiu, 2021. "Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Huan Lu & Ruiyang Wang & Rong Ye & Jinzhao Fan, 2023. "Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China," Land, MDPI, vol. 12(1), pages 1-23, January.
    19. Myagmartseren Purevtseren & Bazarkhand Tsegmid & Myagmarjav Indra & Munkhnaran Sugar, 2018. "The Fractal Geometry of Urban Land Use: The Case of Ulaanbaatar City, Mongolia," Land, MDPI, vol. 7(2), pages 1-14, May.
    20. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1766-1778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.