IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i1p85-106.html
   My bibliography  Save this article

A comparative assessment on the effect of 1-propanol and 1-hexanol as oxygenated additive with diesel/biodiesel blends on single cylinder diesel engine characteristics

Author

Listed:
  • Mohanraj Jayapal
  • Kannan G Radhakrishnan

Abstract

Recovery of energy from waste is appealing as it meets the energy demand and minimize the problems associated with waste management. Biodiesel derived from waste cooking oil was used in this study along with 1-propanol and 1-hexanol to make a comparative assessment of the alcohol addition on different diesel engine characteristics. Experimental trials were carried out by utilizing two ternary blends with 20% by volume of higher alcohols (propanol & hexanol), 30% by volume of biodiesel and 50% by volume of diesel. Later, the results were compared with binary blend of 50% by volume of diesel and 50% by volume of biodiesel (D50B50), pure diesel (D100) and biodiesel (B100). Results divulge that ignition delay period got longer for both Pr20 blend and HX20 blend which resulted in a 2% and 1% increase in peak cylinder pressure and 26% and 15% increase in peak heat release rate respectively against D50B50 blend operation. In comparison with the binary blend, the engine brake thermal efficiency improved by 3% and deteriorated by 2% against hexanol and propanol blend respectively. The NOx emission aggravated with ternary blends, nearly 8% higher NOx emission was observed for propanol blend when compared to hexanol blend. Both smoke opacity and carbon monoxide emission reduced, while unburnt hydrocarbon emission was on the higher side with the introduction of alcohol. It is concluded from the observations that the HX20 blend was found to be optimal in terms of improved engine performance and emission characteristics.

Suggested Citation

  • Mohanraj Jayapal & Kannan G Radhakrishnan, 2022. "A comparative assessment on the effect of 1-propanol and 1-hexanol as oxygenated additive with diesel/biodiesel blends on single cylinder diesel engine characteristics," Energy & Environment, , vol. 33(1), pages 85-106, February.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:1:p:85-106
    DOI: 10.1177/0958305X20985618
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X20985618
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X20985618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ashok, B. & Nanthagopal, K. & Darla, Sivaprasad & Chyuan, Ong Hwai & Ramesh, A. & Jacob, Ashwin & Sahil, G. & Thiyagarajan, S. & Geo, V. Edwin, 2019. "Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel," Energy, Elsevier, vol. 173(C), pages 494-510.
    2. Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Yung, Ka-Fu, 2018. "Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration," Energy, Elsevier, vol. 157(C), pages 258-269.
    3. Jeevanantham, A.K. & Nanthagopal, K. & Ashok, B. & Al-Muhtaseb, Ala'a H. & Thiyagarajan, S. & Geo, V. Edwin & Ong, Hwai Chyuan & Samuel, K. John, 2019. "Impact of addition of two ether additives with high speed diesel- Calophyllum Inophyllum biodiesel blends on NOx reduction in CI engine," Energy, Elsevier, vol. 185(C), pages 39-54.
    4. Balamurugan, T. & Nalini, R., 2014. "Experimental investigation on performance, combustion and emission characteristics of four stroke diesel engine using diesel blended with alcohol as fuel," Energy, Elsevier, vol. 78(C), pages 356-363.
    5. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Ashour, Mahmoud K. & Eldrainy, Yehia A. & Elwardany, Ahmed E., 2020. "Effect of cracked naphtha/biodiesel/diesel blends on performance, combustion and emissions characteristics of compression ignition engine," Energy, Elsevier, vol. 192(C).
    4. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2019. "Effective power and effective power density analysis for water in diesel emulsion as fuel in diesel engine performance," Energy, Elsevier, vol. 180(C), pages 893-902.
    5. Krishnan, M. Gowthama & Rajkumar, Sundararajan, 2022. "Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol," Energy, Elsevier, vol. 252(C).
    6. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.
    7. Çeli̇k, Mehmet & Bayindirli, Cihan, 2020. "Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives," Energy, Elsevier, vol. 202(C).
    8. EL-Seesy, Ahmed I. & Kayatas, Zafer & Hawi, Meshack & Kosaka, Hidenori & He, Zhixia, 2020. "Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 2064-2076.
    9. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    10. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    11. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Upendra Rajak & Abhishek Dasore & Prem Kumar Chaurasiya & Tikendra Nath Verma & Prerana Nashine & Anil Kumar, 2023. "Effects of microalgae -ethanol-methanol-diesel blends on the spray characteristics and emissions of a diesel engine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 1-22, January.
    13. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    14. Kazuhiro Yamamoto & Yusei Akai & Naoki Hayashi, 2022. "Numerical Simulation of Spray Combustion with Ultrafine Oxygen Bubbles," Energies, MDPI, vol. 15(22), pages 1-15, November.
    15. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    16. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Resitoglu, Ibrahim Aslan, 2021. "The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Hazar, Hanbey & Tekdogan, Remziye & Sevinc, Huseyin, 2021. "Determination of the effects of oxygen-enriched air with the help of zeolites on the exhaust emission and performance of a diesel engine," Energy, Elsevier, vol. 236(C).
    19. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    20. Yang, Ziming & Fei, Chunguang & Li, Yikai & Wang, Dongfang & Sun, Chenhan, 2023. "Experimental study of the effect of physical and chemical properties of alcohols on the spray combustion characteristics of alcohol-diesel blended fuels," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:1:p:85-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.