IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v21y2010i8p953-968.html
   My bibliography  Save this article

External Forces Acting on the Earth's Climate: An Approach to Understanding the Complexity of Climate Change

Author

Listed:
  • Ryunosuke Kikuchi

    (ESAC - Instituto Politécnico de Coimbra, Bencanta, 3040-316 Coimbra, Portugal Tel.: +351 239 802287, Fax: +351 239 802979)

Abstract

The Intergovernmental Panel on Climate Change defines lifetime for CO 2 as the time required for the atmosphere to adjust to a future equilibrium state, and it gives a wide range of 5–200 years; however, a number of published data show a short lifetime of 5–15 years. This implies that anthropogenic emissions of CO 2 are sequestrated more easily than expected, suggesting it would be beneficial to look at other climate factors when making long-term predictions. Considering the magnitude and the time length (cycle), climate change can be interpreted as the result of the complex coupling of astronomic forces (e.g. the Earth's orbit and cosmic-ray flux) as well as terrestrial forces. Regarding the Earth's climate as a complex (nonlinear) system, it is necessary for the climate research community and policy makers to distinguish between variations caused by anthropogenic and natural occurrences, and the problem of how to do so arises.

Suggested Citation

  • Ryunosuke Kikuchi, 2010. "External Forces Acting on the Earth's Climate: An Approach to Understanding the Complexity of Climate Change," Energy & Environment, , vol. 21(8), pages 953-968, December.
  • Handle: RePEc:sae:engenv:v:21:y:2010:i:8:p:953-968
    DOI: 10.1260/0958-305X.21.8.953
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.21.8.953
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.21.8.953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. A. Stainforth & T. Aina & C. Christensen & M. Collins & N. Faull & D. J. Frame & J. A. Kettleborough & S. Knight & A. Martin & J. M. Murphy & C. Piani & D. Sexton & L. A. Smith & R. A. Spicer & A. , 2005. "Uncertainty in predictions of the climate response to rising levels of greenhouse gases," Nature, Nature, vol. 433(7024), pages 403-406, January.
    2. Carter, Robert M., 2008. "Knock, knock: where is the evidence for dangerous human-caused global warming?," Economic Analysis and Policy, Elsevier, vol. 38(2), pages 177-202, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    2. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    3. Michel, David, 2009. "Foxes, hedgehogs, and greenhouse governance: Knowledge, uncertainty, and international policy-making in a warming World," Applied Energy, Elsevier, vol. 86(2), pages 258-264, February.
    4. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    5. Marius Zumwald & Benedikt Knüsel & Christoph Baumberger & Gertrude Hirsch Hadorn & David N. Bresch & Reto Knutti, 2020. "Understanding and assessing uncertainty of observational climate datasets for model evaluation using ensembles," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(5), September.
    6. Marina Baldissera Pacchetti & Suraje Dessai & David A. Stainforth & Seamus Bradley, 2021. "Assessing the quality of state-of-the-art regional climate information: the case of the UK Climate Projections 2018," Climatic Change, Springer, vol. 168(1), pages 1-25, September.
    7. Nigel W. Arnell & Emma L. Tompkins & W. Neil Adger, 2005. "Eliciting Information from Experts on the Likelihood of Rapid Climate Change," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1419-1431, December.
    8. Bartsev, Sergey I. & Degermendzhi, Andrey G. & Erokhin, Dmitry V., 2008. "Principle of the worst scenario in the modelling past and future of biosphere dynamics," Ecological Modelling, Elsevier, vol. 216(2), pages 160-171.
    9. Raphael Calel & David Stainforth & Simon Dietz, 2015. "Tall tales and fat tails: the science and economics of extreme warming," Climatic Change, Springer, vol. 132(1), pages 127-141, September.
    10. R. Haszeldine, 2006. "Deep Geological CO 2 Storage: Principles Reviewed, and Prospecting for Bio-energy Disposal Sites," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 369-393, March.
    11. Jianting Zhu & William Forsee & Rina Schumer & Mahesh Gautam, 2013. "Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models," Climatic Change, Springer, vol. 118(2), pages 469-485, May.
    12. Xiaoya Qin & Beibei Qin & Wei He & Yan Chen & Yue Yin & Youlong Cao & Wei An & Zixin Mu & Ken Qin, 2022. "Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    13. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    14. Stephen Newbold & Adam Daigneault, 2009. "Climate Response Uncertainty and the Benefits of Greenhouse Gas Emissions Reductions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(3), pages 351-377, November.
    15. Susan Stratton Sayre & Rachel Goodhue & Leo Simon, "undated". "Probabilistic Political Viability: A Methodology for Predictive Political Economy," Working Papers 2012-01, Smith College, Department of Economics.
    16. Benjamin Sanderson, 2013. "On the estimation of systematic error in regression-based predictions of climate sensitivity," Climatic Change, Springer, vol. 118(3), pages 757-770, June.
    17. Moursi, Hossam & Kim, Daeha & Kaluarachchi, Jagath J., 2017. "A probabilistic assessment of agricultural water scarcity in a semi-arid and snowmelt-dominated river basin under climate change," Agricultural Water Management, Elsevier, vol. 193(C), pages 142-152.
    18. Saeed Golian & Conor Murphy, 2021. "Evaluation of Sub-Selection Methods for Assessing Climate Change Impacts on Low-Flow and Hydrological Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 113-133, January.
    19. Katsumasa Tanaka & Richard S.J. Tol & Dmitry Rokityanskiy & Brian C. O'Neill & Michael Obersteiner, 2006. "Evaluating Global Warming Potentials as Historical Temperature Proxies: an application of ACC2 Inverse Calculation," Working Papers FNU-118, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2006.
    20. Kim, Daeha & Eum, Hyung-Il & Kaluarachchi, Jagath J. & Chun, Jong Ahn, 2019. "A sensitivity-based analysis for managing storage capacity of a small agricultural reservoir under drying climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 410-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:21:y:2010:i:8:p:953-968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.