IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v118y2013i2p469-485.html
   My bibliography  Save this article

Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models

Author

Listed:
  • Jianting Zhu
  • William Forsee
  • Rina Schumer
  • Mahesh Gautam

Abstract

Changes in climate are expected to lead to changes in the characteristics extreme rainfall frequency and intensity. In this study, we propose an integrated approach to explore potential changes in intensity-duration-frequency (IDF) relationships. The approach incorporates uncertainties due to both the short simulation periods of regional climate models (RCMs) and the differences in IDF curves derived from multiple RCMs in the North American Regional Climate Change Assessment Program (NARCCAP). The approach combines the likelihood of individual RCMs according to the goodness of fit between the extreme rainfall intensities from the RCMs’ historic runs and those from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) data set and Bayesian model averaging (BMA) to assess uncertainty in IDF predictions. We also partition overall uncertainties into within-model uncertainty and among-model uncertainty. Results illustrate that among-model uncertainty is the dominant source of the overall uncertainty in simulating extreme rainfall for multiple locations in the U.S., pointing to the difficulty of predicting future climate, especially extreme rainfall regimes. For all locations a more intense extreme rainfall occurs in future climate; however the rate of increase varies among locations. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Jianting Zhu & William Forsee & Rina Schumer & Mahesh Gautam, 2013. "Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models," Climatic Change, Springer, vol. 118(2), pages 469-485, May.
  • Handle: RePEc:spr:climat:v:118:y:2013:i:2:p:469-485
    DOI: 10.1007/s10584-012-0639-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0639-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0639-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. A. Stainforth & T. Aina & C. Christensen & M. Collins & N. Faull & D. J. Frame & J. A. Kettleborough & S. Knight & A. Martin & J. M. Murphy & C. Piani & D. Sexton & L. A. Smith & R. A. Spicer & A. , 2005. "Uncertainty in predictions of the climate response to rising levels of greenhouse gases," Nature, Nature, vol. 433(7024), pages 403-406, January.
    2. T. N. Palmer & J. Räisänen, 2002. "Quantifying the risk of extreme seasonal precipitation events in a changing climate," Nature, Nature, vol. 415(6871), pages 512-514, January.
    3. Nadja A. Leith & Richard E. Chandler, 2010. "A framework for interpreting climate model outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 279-296, March.
    4. James M. Murphy & David M. H. Sexton & David N. Barnett & Gareth S. Jones & Mark J. Webb & Matthew Collins & David A. Stainforth, 2004. "Quantification of modelling uncertainties in a large ensemble of climate change simulations," Nature, Nature, vol. 430(7001), pages 768-772, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Fraz Ismail & Bibi S. Naz & Michel Wortmann & Markus Disse & Laura C. Bowling & Wolfgang Bogacki, 2020. "Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin," Climatic Change, Springer, vol. 163(3), pages 1227-1246, December.
    2. Yog Aryal & Jianting Zhu, 2017. "On bias correction in drought frequency analysis based on climate models," Climatic Change, Springer, vol. 140(3), pages 361-374, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nigel W. Arnell & Emma L. Tompkins & W. Neil Adger, 2005. "Eliciting Information from Experts on the Likelihood of Rapid Climate Change," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1419-1431, December.
    2. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    3. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    4. Benjamin Sanderson, 2013. "On the estimation of systematic error in regression-based predictions of climate sensitivity," Climatic Change, Springer, vol. 118(3), pages 757-770, June.
    5. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    6. Frigg, Roman & Smith, Leonard A. & Stainforth, David A., 2015. "An assessment of the foundational assumptions inhigh-resolution climate projections: the case of UKCP09," LSE Research Online Documents on Economics 61635, London School of Economics and Political Science, LSE Library.
    7. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    9. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    10. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    11. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    12. Hu, Xinyu & Zhao, Jinfeng & Sun, Shikun & Jia, Chengru & Zhang, Fuyao & Ma, Yizhe & Wang, Kaixuan & Wang, Yubao, 2023. "Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    14. Johannes Emmerling, 2018. "Sharing Of Climate Risks Across World Regions," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-19, August.
    15. Lopes, Francis M. & Conceição, Ricardo & Silva, Hugo G. & Salgado, Rui & Collares-Pereira, Manuel, 2021. "Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants," Renewable Energy, Elsevier, vol. 163(C), pages 755-771.
    16. Jürgen Scheffran, 2008. "Adaptive management of energy transitions in long-term climate change," Computational Management Science, Springer, vol. 5(3), pages 259-286, May.
    17. Rick Baker & Andrew Barker & Alan Johnston & Michael Kohlhaas, 2008. "The Stern Review: an assessment of its methodology," Staff Working Papers 0801, Productivity Commission, Government of Australia.
    18. Timothy Osborn & Craig Wallace & Ian Harris & Thomas Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    19. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. H. Hanlon & G. Hegerl & S. Tett & D. Smith, 2015. "Near-term prediction of impact-relevant extreme temperature indices," Climatic Change, Springer, vol. 132(1), pages 61-76, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:118:y:2013:i:2:p:469-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.