IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12617-d933206.html
   My bibliography  Save this article

Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress

Author

Listed:
  • Xiaoya Qin

    (Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences, National Wolfberry Engineering Research Center, Yinchuan 750002, China)

  • Beibei Qin

    (College of Life Sciences, Northwest A&F University, Yangling 712100, China)

  • Wei He

    (College of Life Sciences, Northwest A&F University, Yangling 712100, China)

  • Yan Chen

    (College of Life Sciences, Northwest A&F University, Yangling 712100, China)

  • Yue Yin

    (Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences, National Wolfberry Engineering Research Center, Yinchuan 750002, China)

  • Youlong Cao

    (Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences, National Wolfberry Engineering Research Center, Yinchuan 750002, China)

  • Wei An

    (Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences, National Wolfberry Engineering Research Center, Yinchuan 750002, China)

  • Zixin Mu

    (College of Life Sciences, Northwest A&F University, Yangling 712100, China)

  • Ken Qin

    (Wolfberry Science Institute, Ningxia Academy of Agriculture and Forestry Sciences, National Wolfberry Engineering Research Center, Yinchuan 750002, China)

Abstract

Heat stress has a strong and detrimental effect on plant growth and yield. Goji berry or wolfberry ( Lycium barbarum L.) is a dual-purpose medicinal and food plant but an increase in high temperatures has caused a serious decline in wolfberry yield and quality. In this study, we first explored the heat stress responses of Goji berry, and found that heat stress adaptation mechanisms fluctuated over 48 h. Moreover, L. barbarum 1402 was more heat resistant while L. barbarum Ningqi No. 7 (N7) was sensitive to high temperatures, in which amino acids and alkaloids played key roles; expression and accumulation timing was also crucial. That is, 1402 responded to heat stress rapidly starting at 1 h under high temperature, activated related genes, and accumulated metabolites earlier in the amino acid metabolic pathway compared to N7, which responded to heat stress starting at 3 h under high temperature. Thus, 1402 resisted high temperatures much earlier and better compared to N7. Furthermore, joint transcriptome and metabolome analysis results showed that L-phenylalanine, L-tyrosine, N-benzylformamide, N-benzylmethylene isomethylamine, lysoPC 19:1, and N-acetyl-D-glucosamine-1-phosthate, as well as their related genes, were higher in content, or earlier in expression, in 1402 compared to N7 under heat treatment. This study initially elucidates that Goji berry 1402 has a better tolerance to heat stress than N7 for earlier and higher expression or accumulation of amino acids and alkaloids when related to high temperatures.

Suggested Citation

  • Xiaoya Qin & Beibei Qin & Wei He & Yan Chen & Yue Yin & Youlong Cao & Wei An & Zixin Mu & Ken Qin, 2022. "Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12617-:d:933206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    2. D. A. Stainforth & T. Aina & C. Christensen & M. Collins & N. Faull & D. J. Frame & J. A. Kettleborough & S. Knight & A. Martin & J. M. Murphy & C. Piani & D. Sexton & L. A. Smith & R. A. Spicer & A. , 2005. "Uncertainty in predictions of the climate response to rising levels of greenhouse gases," Nature, Nature, vol. 433(7024), pages 403-406, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saima Iqbal & Muhammad Aamir Iqbal & Chunjia Li & Asif Iqbal & Rana Nadeem Abbas, 2023. "Overviewing Drought and Heat Stress Amelioration—From Plant Responses to Microbe-Mediated Mitigation," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    3. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    4. repec:ags:aaea22:335489 is not listed on IDEAS
    5. Schallaböck, Karl Otto & Fischedick, Manfred & Brouns, Bernd & Luhmann, Hans-Jochen & Merten, Frank, 2006. "Klimawirksame Emissionen des PKW-Verkehrs und Bewertung von Minderungsstrategien," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 34, number 34.
    6. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    7. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    8. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Teresa Armada Brás & Jonas Jägermeyr & Júlia Seixas, 2019. "Exposure of the EU-28 food imports to extreme weather disasters in exporting countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1373-1393, December.
    10. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    11. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    12. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    13. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    14. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    15. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    16. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    17. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    18. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    19. Qimeng Pan & Lysa Porth & Hong Li, 2022. "Assessing the Effectiveness of the Actuaries Climate Index for Estimating the Impact of Extreme Weather on Crop Yield and Insurance Applications," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    20. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    21. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12617-:d:933206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.